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1 Introduction

� The idea behind a priori risk classi�cation is to split an insurance portfolio
into classes that consist of risks with all policyholders belonging to the
same class paying the same premium. In view of the economic importance
of motor third party liability (MTPL) insurance in developed countries,
actuaries have made many attempts to �nd a probabilistic model for the
distribution of the number and costs of claims reported by policyholders.

� Recent actuarial literature research assumes that the risks can be rated a
priori using generalized linear models, GLM (see Nelder and Wedderburn,
1972) and generalized additive models, GAM (see Hastie and Tibshirani,
1990). For motor insurance, typical response variables in these regression
models are the number of claims (or claim frequency) and its corresponding



severity. The models brie�y described above assume that only the mean is
modelled as a function of risk factors. However, any model for the mean in
terms of a priori rating variables indirectly yields a model for scale and/or
shape. Also, even if the mean is the most commonly used measure of the
expected claim frequency and of the expected claim severity it does not
provide a good description of a distribution�s scale and shape. Speci�cally,
the scale and shape parameters are not adequately described due to the
unobserved heterogeneity changes with explanatory variables.

� In this study, we extend this setup by assuming that all the parameters
of the claim frequency/severity distributions can be modelled as functions
of explanatory variables with parametric linear functional forms. Joint
modelling of all the parameters in terms of covariates improves rate making
and estimation of the scale and shape of the claim frequency/ severity



distributions. Speci�cally, we model the claim frequency using the Negative
Binomial Type II, Sichel and Zero-In�ated Poisson models and the claim
severity using the Gamma, Weibull, and Generalized Pareto models. Our
contribution puts focus on the comparison of these models through their
variance values and not only the mean values as usually considered in risk
classi�cation literature. To the best of our knowledge, it is the �rst time
that the variance of the claim frequency and severity is modelled in the
context of ratemaking.

� The di¤erences between these models are analyzed through the mean and
the variance of the annual number of claims and the costs of claims of
the policyholders who belong to di¤erent risk classes, which are formed
by dividing the portfolio into clusters de�ned by the relevant ratemaking
factors. Finally, the resulting premium rates are calculated via the expected
value and standard deviation principles with independence between the
claim frequency and severity components assumed.



2 Regression Models for Location, Scale and Shape

2.1 Frequency Component

� Consider a policyholder i whose number of claims, denoted as Ki, are
independent, for i = 1; ::; n. The probability that the policyholder i has
reported k claims to the insurer, k = 0; 1; 2; :::, is denoted by P (Ki = k).

� The pdf of Negative Binomial Type II (NBII) distribution is given by
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for � > 0 and � > 0. Following Rigby and Stasinopoulos (2005 and
2009), we assume that �i = exp (c1i�1) and �i = exp (c2i�2), where
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the a priori rating variables and the coe¢ cients respectively, for j = 1; 2.
The mean and the variance of Ki are given by

E(Ki) = exp (c1i�1) (2)

and

V ar(Ki) = exp (c1i�1) [1 + exp (c2i�2)] : (3)

� The pdf of the Sichel distribution is given by

P (Ki = k) =

�
�
c

�k
Kk+� (a)

k! (a�)k+�K�
�
1
�

�; (4)



where � > 0 and �1 < � <1 and where c =
K�+1

�
1
�

�
K�

�
1
�

� ; where

K� (z) =
1

2

1Z
0

x��1 exp
�
�1
2
z

�
x+

1

x

��
dx; (5)

is the modi�ed Bessel function of the third kind of order � with argument
z and where a2 = ��2 + 2� (c�)�1. Following Rigby and Stasinopoulos
(2008 and 2009), we assume that �i = ei exp (c1i�1), �i = exp (c2i�2)
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are the 1 � J 0j vectors of the a priori rating variables and the coe¢ cients
respectively, for j = 1; 2; 3. The mean and variance of Ki are given by

E(Ki) = exp (c1i�1) (6)
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� The pdf of the Zero-In�ated Poisson (ZIP) distribution is given by

P (Ki = k) =
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Following Rigby and Stasinopoulos (2005 and 2009), we assume that
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variables and the coe¢ cients respectively, for j = 1; 2. The mean and
the variance of Ki are given by

E(Ki) = ei exp (c1i�1) [1� exp (c2i�2)] (9)
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2.2 Severity Component

� Let Xi;k be the cost of the kth claim reported by policyholder i; i =
1; :::; n and assume that the individual claim costs Xi;1;Xi;2; ::: are inde-
pendent and identically distributed (i.i.d ).

� The pdf of the Gamma distribution is given by
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forXi;k > 0; wherem > 0 and s > 0. Following Rigby and Stasinopoulos
(2009), we assume that mi = exp (d1i1) and si = exp (d2i2), where
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the exogenous variables and the coe¢ cients respectively, for j = 1; 2. The
mean and the variance of Xi;k are given by

E(Xi;k) = exp (d1i1) (12)

and

V ar(Xi;k) = [exp (d2i2)]
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� The pdf of the Weibull distribution is given by
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where m > 0 and s > 0. Following Rigby and Stasinopoulos (2009), we
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and the coe¢ cients respectively, for j = 1; 2. The mean and the variance
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� The pdf of the Generalized Pareto distribution is given by
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where m > 0; n > 0 and t > 0. Following Rigby and Stasinopoulos
(2008), we assume that mi = exp (d1i1), ni = exp (d2i2) and ti =
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3 Application

� The data were kindly provided by a Greek insurance company and concern
a motor third party liability insurance portfolio observed during 3.5 years.
The data set comprises 15641 policies. Both private cars and �eet vehicles
have been considered in this sample. The available a priori rating variables
we employ are the Bonus Malus (BM) class, the horsepower (HP) of the
car and gender of the driver.

� The Bonus-Malus class consists of four categories: A, B, C and D, where:
A = "drivers who belong to BM classes 1 and 2", B = "drivers who belong
to BM classes 3-5", C ="drivers who belong to BM classes 6-9 & 11-20"
and D = "drivers who belong to BM class 10". The horsepower of the car
consists of three categories: A, B and C, where: A = "drivers who had



a car with a HP between 0-33 & 100-132", B = "drivers who had a car
with a HP between 34-66" and C = "drivers who had a car with a HP
between 67-99". The gender consists of two categories: M= "male" and F
= "female" drivers. Regarding the amount paid for each claim, there were
5590 observations that met our criteria. The Bonus-Malus class consists
of three categories: A, B and C, where: A = "drivers who belong to BM
classes 1 and 2", B = "drivers who belong to BM classes 3-5 & 6-9 &
11-20" and C = "drivers who belong to BM class 10". The horsepower
of the car consists of four categories A, B, C and D, where: A = "drivers
who had a car with a HP between 100-110 & 111-121 & 122-132", B =
"drivers who had a car with a HP between 0-33 & 34-44 & 45-55 & 56-66",
C = "drivers who had a car with a HP between 67-74" and D = "drivers
who had a car with a HP between 75-82 & 83-90 & 91-99". Finally, the
gender consists of three categories: M = "male", F = "female" and B =
"both", since in this case, data for �eet vehicles used by either male or
female drivers were also available, i.e. shared use.



� So far, we have several competing models for the claim frequency and
severity components. The di¤erences between models produce di¤erent
premiums. Consequently, to distinguish between these models, this section
compares them so as to select the best for each case.

� The resulting Global Deviance, AIC and SBC are given in Table 1 for the
di¤erent claim frequency (Panel A) and claim severity (Panel B) �tted
models.



Table 1: Models Comparison

Panel A: Claim Frequency Models
Model df Global Deviance AIC SBC
NBII 11 28323.32 28345.32 28429.55
Sichel 11 28348.97 28370.97 28455.20
ZIP 12 28503.22 28527.22 28619.11

Panel B: Claim Severity Models
Model df Global Deviance AIC SBC
Gamma 16 69665.05 69697.05 69803.11
WEI 16 70794.96 70826.96 70933.02
GP 22 69582.12 69526.12 69771.96

� Overall, with respect to the Global Deviance, AIC and SBC indices, from
Panel A we observe the best �tted claim frequency model is the Negative



Binomial Type II model. From the claim severity models in Panel B we see
that the best �tting performances are provided by the Generalized Pareto
model.

� The �nal a priori ratemaking for the claim frequency models contains 24
classes. As expected, the variance of the NBII, Delaporte, Sichel and
ZIP model exceeds the mean and these models allow for overdispersion.
Furthermore, we observe that the biggest di¤erences lie in the variance
values of these models. For example, the in the following Table one can
see the mean and the variance of the expected number of claims for a man
who belongs to BM category A and has a car that belongs to HP category
A, i.e. for the reference class, in the case of the NBII, Sichel and ZIP
model respectively.



Table 2: A Priori Risk Classi�cation Using Claim Frequency Models

Risk NBII Sichel ZIP
Class Mean Var Mean Var Mean Var

1 BMA;HPA;M 0.1267 0.2140 0.1258 0.1884 0.1261 0.1391
2 BMA;HPA;W 0.1357 0.1964 0.1377 0.2128 0.1414 0.1507
3 BMA;HPB;M 0.1001 0.1318 0.0984 0.1046 0.0983 0.1062
4 BMA;HPB;W 0.1072 0.1293 0.1078 0.1152 0.1102 0.1158
5 BMA;HPC;M 0.1178 0.1592 0.1166 0.1260 0.1148 0.1256
6 BMA;HPC;W 0.1261 0.1550 0.1277 0.1390 0.1288 0.1365
7 BMB;HPA;M 0.2385 0.4029 0.2383 0.4629 0.2742 0.2777
8 BMB;HPA;W 0.2555 0.3699 0.2610 0.5302 0.2527 0.2543
9 BMB;HPB;M 0.1885 0.2483 0.1863 0.2089 0.2136 0.2158
10 BMB;HPB;W 0.2020 0.2435 0.2040 0.2311 0.1969 0.1980
11 BMB;HPC;M 0.2217 0.2998 0.2208 0.2548 0.2496 0.2524
12 BMB;HPC;W 0.2375 0.2918 0.2418 0.2825 0.2300 0.2314



� The �nal a priori ratemaking for the claim severity models contains 36
classes. For example, the in the following Table one can see the mean
and the variance of the expected cost of claims for a man who belongs to
BM category A and has a car that belongs to HP category A in the case
of the Gamma, WEI and Generalized Pareto model.



Table 3: A Priori Risk Classi�cation Using Claim Severity Models

Risk GA WEI GP
Class Mean Var Mean Var Mean Var

1 BMA;HPA;B 584.00 135347.30 597.96 169637.36 583.03 142078.20
2 BMA;HPA;M 521.75 78621.46 526.73 110315.30 514.78 89891.64
3 BMA;HPA;W 543.92 82108.76 546.89 118812.19 536.75 95624.76
4 BMA;HPB;B 294.89 18453.33 295.51 19539.26 300.72 26138.91
5 BMA;HPB;M 263.46 10719.29 263.36 13061.64 265.51 16207.29
6 BMA;HPB;W 274.65 11194.75 273.45 14069.47 276.84 17199.88
7 BMA;HPC;B 326.75 19827.00 326.18 23575.68 333.03 29934.69
8 BMA;HPC;M 291.93 11517.24 290.72 15762.85 294.05 18551.62
9 BMA;HPC;W 304.32 12028.09 301.85 16979.11 306.59 19686.62
10 BMA;HPD;B 388.27 36033.34 390.33 43363.58 394.23 46566.35
11 BMA;HPD;M 346.88 20931.28 346.96 28820.08 348.08 29009.46
12 BMA;HPD;W 361.62 21859.70 360.26 31043.01 362.94 30803.37



� The claim frequency and severity models are better compared through their
variance values, leading to a better classi�cation of the policyholders and
thus modelling jointly the location, scale and shape parameters in terms
of a priori rating variables is justi�ed because it enables us to use all the
available information in the estimation of these values through the use of
the important a priori rating variables for the number and the costs of
claims respectively.



3.1 Calculation of the Premiums According to the Ex-

pected Value and Standard Deviation Principles

� The premium rates calculated according to the expected value principle
are given by

P1 = (1 + w1)E(Ki) (1 + w2)E(Xi;k); (20)

where w1 > 0 and w2 > 0 are risk loads.

� The premium rates calculated according to the standard deviation principle
are given by



P2 =
�
E(Ki) + !1

q
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� h
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q
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i
; (21)

where !1 > 0 and !2 > 0 are risk loads.

� In the following example (Table 4), two di¤erent groups of policyholders
have been considered. In Table 4 a �YES� indicates the presence of the
characteristic corresponding to the column.

Table 4: The Six Di¤erent Groups of Policyholders to Be Compared

Group BM Category A HP 0-33 HP 34-66 HP 100-132 Male Female
1 YES YES NO NO YES NO
2 YES YES NO NO NO YES



� We will calculate the premiums P1 and P2 that must be paid by a speci�c
group of policyholders based on the alternative models for assessing claim
frequency and the various claim severity models. We assume that w1 =
w2 = !1 = !2 =

1
10. The premiums P1 and P2 are obtained in Table 5 .



Table 5: Premium Rates Calculated Via the Expected Value and Standard
Deviation Principles

Group NBII-GA NBII-WEI NBII-GP
P1 P2 P1 P2 P1 P2

1 40.3903 47.3588 40.3750 47.5275 40.7045 48.1246
2 45.0967 51.3464 44.9000 51.3610 45.4563 52.1968

Group SI-GA SI-WEI SI-GP
P1 P2 P1 P2 P1 P2

1 40.1034 46.3306 40.0881 46.4957 40.4154 47.0800
2 45.7614 52.4340 45.5614 52.4489 46.1263 53.3025

Group ZIP-GA ZIP-WEI ZIP-GP
P1 P2 P1 P2 P1 P2

1 40.1990 44.7401 40.1837 44.8994 40.5118 45.4635
2 46.9910 51.4043 46.7857 51.4189 47.3657 52.2557



4 Conclusions

� In this paper, we examined the use of regression models for location, scale
and shape for pricing risks through ratemaking based on a priori risk clas-
si�cation.

� The resulting a priori premiums rates were calculated via the expected
value and standard deviation principles with independence between the
claim frequency and severity components assumed.

� Extensions to other frequency/severity regression models for location scale
and shape can be obtained in a similar straightforward way. Moreover,
these models are parametric and a possible line of further research is to



explore the semiparametric approach and go through the ratemaking ex-
ercise when functional forms other than the linear are included, based on
the generalized additive models for location scale and shape (GAMLSS)
approach of Rigby and Stasinopoulos (2001, 2005 and 2009). Also see, for
example, a recent paper by Klein et al. (2014) in which Bayesian GAMLSS
models are employed for nonlife ratemaking and risk management.


