

Agenda

- Why Do We Need Data?
- Traditional Data Usage & Collection
- Using External Data
- Geographical Information Science
- Unstructured Data
- Behavioral Data
- Client Relationship Management
- Conclusion

Why do we need data?

TD

- Better Understand the Customer
- Make better decisions:
 - $_{\odot}$ W hat is the adequate premium?
 - Do we have the appetite for this risk?Should we act on renewal for this policy?

Many of these decisions need to happen quickly in real-time

- Improve customer experience

- o Provide better advice to customers
- o Meet the insured's needs and expectations
- $_{\odot}$ Serve the customer in a timely yet efficient manner

Customer experience has recently become a growing area of focus

Traditional Data Usage & Collection

Collected when Underwritten and used to describe the different entities

 Age, Gender, marital status, driving experience, Credit score, convictions, claims experience, ...

- Vehicle make\model, model year, modifications, ...

 Year built, amount of insurance, postal code, construction type, basement, roof type/age, ...

Using External Data

- Traditionally, links with external data for information unknown to customers, or little reliance on the customer's word:
- Examples:
- o Credit Score
- o Claim History
- o Driving Convictions
- Greater availability of external data providers allows for the possibility to reduce handling time with pre-population
- Property details from address
- Customer information from driver's license
- Vehicle characteristics and history from VIN

Considerations when selecting data providers

- What are the potential benefits of the data?
- Provide new uncorrelated information to other data points already available
- Improve the predictive power of the claims model - Identifies adequately profiles with worst risk characteristics
- Reduce the handling time with customers - Help me better serve or understand the customer
- Improve the customer experience
- What are the costs?
- Cost is not solely acquiring or purchasing data!
- o Is IT involvement required? What resources are required?
- o Does storage or new extractions to consume the data require system changes? o Are monitoring resources required to ensure data adequacy?
- o Maintenance fees?

Considerations when selecting data providers

TD

TD

- What are the risks?
 - Are there any other provider I don't know about I should consider?
 - Is the provider financially sound?
 - Is my data protected?
 - Are there any regulatory constraints that would prevent me from using the data?
 - Is the data accurate? - Are up-time and response time adequate?

 - What is the back-up plan if service not available or no-hit?

Geographical Information Science

Territorial Analysis

D

- One element of the profile of house / customer or vehicle is the location, ie where the risk is located
- We typically describe this dimension at Postal Code/ Zip Code, FSA/County, Province/State ...
- To better describe the very high granularity of postal codes and low credibility, we try to find ways to regroup similar levels into homogenous groups
- Groups can be formed from:
 - Geographic proximity
 - -Demographic data from census or other
- Demographics data can change over time, which might require major review after new census

Limitations of Postal Code

- New product availabilities might increase the need of territorial granularity
 Flood:
 - Risk might be very different houses located close from each other
 - Postal code territory definition might not be able to properly differentiate those risks
 - Error factor even greater in rural areas, where postal code cover many houses that can be far apart
- · Other level of granularity which might be possible to capture
- Distance from forest from forest maps
- Elevation, slope, shape of the land
- Infrastructure databases
- In Canada, Postal code definitions changes continuously which make maintenance of database difficult

TD

12

GIS – Geographical Information Systems

 A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographical data

The Geographic Approach

- We use GIS to gather place-based information and organize it on a digital map. We then use the software analytical tools and capabilities to evaluate a decision.
- It is then possible to increase granularity of information about particular locations
- Once we understand the possible geographical constraints and possible consequences of our decision, we can then act in an informed and responsible manner.

Geolocalisation

TD

- There are multiple challenges to get an address geolocalised
 - Need to have a clean, and recognized format of an address, which is often on a free form format, which can make analysis of active or historical policies more difficult
 - Extensive database and expertise required to develop and maintaining a proper geolocalisation service, so choice of right provider is essential.
 - Even if we can get the latitude and longitude, most systems do not have
 capacity to assign a territorial factor or set of rules from those features
 - If want to be fully able to leverage the value of data, need to be able to have the process applied real time
 - Need a contingency plan when address is not recognized and not able to return
 a proper geocoding

Unstructured Data

 $80^{\%}$ of the world's data is unstructured

Unstructured Data

- Unstructured data is data that does not have a predefined structured, or data models
- It is sometimes defined as fat data, as it can be organized in millions of attributes.
- The most common type of unstructured data that is mined is text

[image credit: IBM]

16

D

- One advantage of being disorderly is that one is constantly making exciting discoveries.

Unstructured Data

Text Data:

- from claims or underwriting notes - More and more software or open source algorithms exist to analyze and classify this data

Voice Files:

- phone calls from contacts with customers
- Much bigger data in terms of size
 Not as many tools exists to parse this data, but more and more available
 Voice to text, sentiment analysis, footprint

Reports:

- digitalization of historical claims files
- extracting information from different ordered reports
- Picture Recognition:
- Can extract home characteristics from satellite or drone imagery - Used in claims to assess damages of a vehicle, or see if picture is reused in multiples claims files

18

Unstructured Data

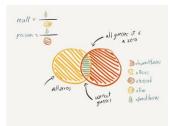
TD

- Challenges with unstructured data: Text Mining
- When most data warehouses where created long time ago or more, unstructured data was not in a need to be transferred with other data elements, so data harder to extract today
- There might be multiple free form fields in the systems, so searching where the valuable information is stored can by itself be very challenging
- Traditional tools and statistical methods used cannot adequately
 extract the information
- Until new open-source software packages become recently available, software packages were more expensive and not performing that well

Text Mining

TD

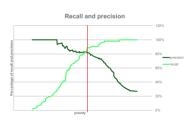
Steps for text mining projects (or any data project):


· Find the problematic you want to resolve

- Identify fraudulent claims
- Reason for Customers contacts (from SMS, Emails, ...)
 Causes of loss
- Customer satisfaction
- · Evaluate the required data, which might be a mix of structured and unstructured
- Will my hardware be able to process the data
- You might know too late if it will work or not
 What will the solution look like:
- Modification of a question or process
- Will there need to be a real-time decision to be make?
- · What tools and techniques will I use
- Open source vs Commercial software

Text Mining: Validation

Precision is the percentage of items predicted relevant that are really relevant
 Recall is the percentage of really relevant items that are within the items predicted rel



Text Mining: Validation

TD

TD

Precision is the percentage of items predicted relevant that are really relevant
 Recall is the percentage of really relevant items that are within the items predicted relevant

Voice Analytics

- Voice Analytics:
- Fast growing field and more and more area of focus
- One of main component is Voice recognition (voice to text).
- Sentiments analysis
- Voice/Speaker recognition
- With artificial intelligence, it is also possible to respond to interactions with actual insurance advices
- Challenges of Voice Analytics
 - Software might be expensive and hard to integrate with existing platforms
 - Many of existing software are a dead-end. Insights are harder to circle back with other data points

Behavioral Data

Behavioral Data

D

D

- Data produced as a result of multiple actions/decisions of individuals over a certain period of time
- With the arrival of mobile and smart devices, it has become possible to track more and more actions of the customers
- Behavioral data can capture huge amounts of data points, one every second or more
- Eg: of behavioral data:
 - Credit score - Usage Based Insurance
 - Digital Footprint
 - Social Media
- 2 Possible outcome of understanding behaviour:
 - New feature of a customer (score)
 - Insensitive to modify the customer's behaviour to improve risk profile

Behavioral Data

TD

- Usage Based-Insurance:
 - From a device connected to vehicle or from the cell phone data, while insured is driving, one record every second or so that is transferred with insurer
 - Score is usually computed real-time and results is shared back with customer so he can try to improve

 - Each customer will produce hundreds of gigabytes of data every year, so this is when we really need to have a platform for this data
- Balance between improving the models and insightful score to customers
 - -Machine learning algorithm will be useful at identifying similar behaviors -But scores might become more difficult to share with customers or with regulators
- Also possible to improve the score by changing the behavior based on meta data:
 - -Type of road -Relative traffic -Weather


Behavioral Data

- At times, the number of actions taken for a customer are not frequent enough to identify if specific actions taken by insurer toward customer have had an impact or not
- It is paramount to find an optimal contact strategy since the number of actions that can be taken toward with customers are countless
- To achieve the goal, one will need to compare the results of different actions on similar individuals and try to measure outcome. = AB testing, or control group
- Possible questions:
- Subserve systematic terms which is a should i contact prior to their renewals
 -bo have a web page versus another that is performing better for a certain type of clients
 -box can l optimize my marketing campaign
 -whor would have begins netword a positive value
 -whore would have been the retention of the policyholder if premium difference would have
 been different at renewal

Uplift Model: Type of customer

Customer Relation Management

- To be able to effectively track previous actions undertaken with customers and optimize decisions, a 360 view of your customers is required
- CRM is leveraged to optimize the customer experience by integrating the proper technology and strategies; they enable the compilation of information about customers from different channels, and track the points of contact between them and the provider
- Decrease number of contacts with customer but optimize relevance and impact of each contact

D

Conclusion

- Currently, the quantity of available data is rapidly increasing and this trend will continue, and even accelerate
- More and more devices will get connected, data points collected, more information to analyze and insight to act upon
- Data is a very big asset for insurance companies, and for all companies in general
- Better understanding of the data can lead to better decisions and better customer satisfaction