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Conclusions
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Objective: to give you a working 
knowledge of some machine learning 
methods that may be used to improve 
GLM results and/or offer valuable 
insights in their own right in the field 
of P&C insurance pricing
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Focus of today’s talk
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Pricing
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What are these methods?
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Does it work?
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How do you measure value?
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§ Rank hold out observations by their fitted values (high to low)
§ Plot cumulative response by cumulative exposure
§ A better model will explain a higher proportion of the response with a lower proportion of exposure
§ …and will give a higher Gini coefficient (yellow area)

Gini



Example results
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Model Gini

GLM 0.327



Example results
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Model Gini

GLM 0.327
New Model 0.330



Example results
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Model Gini Gini 
improvement

GLM 0.327 0.0%
New Model 0.330 1.0%



Example results
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Model Gini Gini 
improvement Gini rank

GLM (main factor removed) 0.318 -2.6% 4
GLM (minor factor removed) 0.322 -1.3% 3
GLM 0.327 0.0% 2
New Model 0.330 1.0% 1



But…
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§ Think of a model…
§ Multiply it by 123
§ Square it
§ Add 74½ billion

§ …and you get the 
same Gini coefficient!



Double lift chart
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Financial value estimate
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§ Errors in insurance pricing are not symmetrical
§ Financial benefit can be estimated 



Example results
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Results redacted



Financial value vs Gini
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Is it really all about the method?
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Where is the value?
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The problem dimension
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What are these methods?

© 2017 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Ensemble 
Methods

Classifications 
Trees "Earth"

K-nearest 
Neighbors Elastic Net Neural 

Networks

Regression 
Trees

Naïve Bayes

K-Means 
Clustering

Principal 
Components 

Analysis
Lasso Support Vector 

Machines

Gradient 
Boosting 
Machines

Random 
Forests

Ridge 
Regression



Choosing a method
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What are these methods?
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Penalized Regression

25

�(�|�,�) + ��� ���
+	��� ����

f(x) = g-1(X.β) where β estimated by minimizing 

Elastic Net

GLM

Ridge ∑���� Lasso	∑ ���Elastic Net

Heavily penalize large parameters, 
but does not reduce parameters to zero

Penalty reduces insignificant parameter 
values to zero - useful for variable selectionMix of the two

Ridge Lasso 



Penalized Regression
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Parameter selection

§ Minimize: �(�|�,�)+��∑ ��� +	��∑����
§ Penalty parameters can be re-written:				��=��,					��=����

�
§ �controls the mixture between Lasso (�=1) and Ridge (�=0)
§ �controls the overall size of the penalty
§ �, �selected using cross-validation
§ Factors automatically

selected from initial set!
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Penalized Regression
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Case study – vehicle classification

Physical facticity
E.g., height, length, weight

Performance
E.g., maximum speed, torque, BHP

Qualitative descriptors 
E.g., body type, model range

Mechanical nature
E.g., engine size, fuel type



Penalized Regression
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Case study – vehicle classification

Results redacted



Deploying Penalized Regression
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Same as GLMs!

Age Multiplier
<20 2.12

20-25 1.74

25-30 1.09

30-39 1.00

40-49 0.95

50+ 0.06

Vehicle Group Multiplier
1 0.83

2 0.91

3 0.96

4 1.00

5 1.05

6 1.17

7 1.25

8 1.42

9 1.89

Gender Multiplier
Male 1.00

Female 0.97
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What are these methods?
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Group < 15?

Age < 40?

All data

Decision Trees
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Random Forests
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All DataGroup < 5?
Y N
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Group < 15?
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Gradient Boosting Machine or “GBM”
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Gradient Boosted Machine or “GBM”
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Four main assumptions

§ λ Learning rate / “shrinkage”
§ Amount by which the old model predictions are 

varied for the next model iteration
§ New model = 

Old + (Prediction x Learning rate)
§ Interaction depth
§ Number of splits allowed on each tree 

(or the number of terminal nodes – 1)
§ N Number of trees (iterations) allowed
§ Bag fraction
§ Trees are fitted to a subset of the data (the bag 

fraction) on a randomized basis
§ Additional noise-reduction can be achieved by 

using a random subset of the available factors 
at each iteration

A GBM

�� = λ� ��(�)
�

���

λ + λ + λ + λ + 

λ + λ + λ + λ + 

λ + λ + λ + λ + 

λ + λ + λ + λ



Gradient Boosted Machine or “GBM”
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Four main assumptions

§ λ Learning rate / “shrinkage”
§ Amount by which the old model predictions are 

varied for the next model iteration
§ New model = 

Old + (Prediction x Learning rate)
§ Interaction depth
§ Number of splits allowed on each tree 

(or the number of terminal nodes – 1)
§ N Number of trees (iterations) allowed
§ Bag fraction
§ Trees are fitted to a subset of the data (the bag 

fraction) on a randomized basis
§ Additional noise-reduction can be achieved by 

using a random subset of the available factors 
at each iteration

Best result shown by this point on 
brown line (interaction depth 2 and 

learning rate 2% in this case)

Fit

Fit
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Fit
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Fit

Test

Fit

Fit

1 2 3



What does a GBM look like?



What does a GBM look like?



§ Does it work?
§ How does it work?



GBM – value add
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Results redacted



What are these methods?
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Adding an ensemble
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Results redacted
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What about a modelled down GBM?

Results redacted



What about an automated GLM?
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What about an automated GLM?
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Results redacted



§ Does it work?
§ How does it work?



Partial dependency plots etc
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Deploying GBMs
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Age Exposure Burning 
Cost

Vehicle 
Group Exposure Burning 

Cost

1 <=20 1,720 179 1 1-10 164,107 77 

2 21-30 34,893 122 2 11-14 84,859 101 

3 31-50 118,182 102 3 15-18 28,952 116 

4 51+ 127,054 70 4 19-20 3,931 272 

5 Age Total 281,849 91 5 VG Total 281,849 91 

Gender Exposure Burning 
Cost

1 Male 197,339 92 

2 Female 84,510 87 

3 Gender 
Total 281,849 91 

Model down into multiplicative 
tables via GLMs

Use insights to guide GLM

Factor 
Reduction

Establish 
Model 

Hierarchy

Corner 
correctors 
and pre-
baked 

interactions

Deploy directly



Deploying GBMs
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Deploy directly
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For which business applications do you use or plan to use these methodologies? (Q.13) 

Base: U.S. respondents who use or plan to use the methodology  for the application specified (Loss Cost Modeling n = 46, Claims Analytics n = 48, Marketing n = 27).

Modeling Techniques

42%

40%

31%

23%

17%

17%

21%

17%

33%

8%

37%
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30%

19%

15%

22%

22%

19%

19%

15%

Loss Cost Modeling Claims Analytics Marketing

n Primary
n Secondary
n Tertiary

How is the North American market doing with machine learning?
Methods used



Machine learning in personal lines pricing: evolution or revolution?
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Conclusions

§ It’s not all about methods
§ Domain expertise in formulating the problem can be more important
§ New (wider) data generally adds more lift than new methods

§ There are practical ways to assess model improvement as well as statistical
§ Predictions:
§ Many methods can augment the traditional GLM modeling process – in particular with growing datasets
§ Others (e.g., GMBs) can improve prediction in own right but these require different approaches in interpretation and 

technology/deployment
§ Methods support predictions in new areas

̵ Very wide datasets
̵ Market rate analysis
̵ Cross-selling and other customer behaviors
̵ UW, claims, etc

§ But it’s not all about predictive power
§ Fast investigation of new or “messy” data
§ Quick assessment of emerging experience
§ Operational efficiency

§ Industry (and Profession) has work to do in developing machine learning skills integrated with domain 
expertise

Data scientists 
& statisticians

Domain experts
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