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Simple Example Of Traditional Assumption Tested 
Model

Simple Linear Regression Model

• Y = m X + b + ξ

• ξ ~ Normal(0, σ2)

• σ2 is constant

• ξ is independent of Y and X

• ξ is sequentially auto-independent

• Least Squares = Maximum Likelihood Estimation (MLE), used for fitting
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Simple Example Of Traditional Assumption Tested 
Model

Invalidity of Assumptions on 2 Years Data:

• ξ is clearly not Normal.

• σ2 is not constant.

• ξ is dependent on X.

Game Over! The model is discarded! Sad!
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Simple Example Of Predictively Tested Model

“Simplified” Simple Linear Model

• E[Y] = m X + b

• Typically least squares would still be used to fit this model, but the 
likelihood, needed for MLE, cannot even be defined.

• However, we will split out the two years of data and use Year 1 to 
predict Year 2.
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Simple Example Of Predictively Tested Model

• The linear fit is very predictive even though the assumptions of a 
standard simple linear regression model were severely violated.

• Now we will do this again in a situation where the data from Year 1 
and Year 2 are very different.
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Simple Example Of Predictively Tested Model

• In this alternate situation the linear model is very unpredictive, 
actually doing damage to estimates.

• These two situations together demonstrate the value of predictive 
performance testing over testing model assumptions.
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Direct Measurement
𝑦𝑦 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … 𝑥𝑥𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�𝑥𝑥1 =
∑𝑦𝑦

∑𝑥𝑥2𝑥𝑥3 … 𝑥𝑥𝑛𝑛

�𝑥𝑥2 =
∑𝑦𝑦

∑𝑥𝑥1𝑥𝑥3 … 𝑥𝑥𝑛𝑛

�𝑥𝑥3 =
∑𝑦𝑦

∑𝑥𝑥1𝑥𝑥3 … 𝑥𝑥𝑛𝑛
etc.
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Multiplicative Minimum Bias Model
Total losses   𝐿𝐿𝑖𝑖1,…,𝑖𝑖𝑛𝑛 ≥ 0 for a particular combination of rating characteristics 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛 is 

equal to a product of factors 𝑋𝑋𝑗𝑗,𝑖𝑖𝑗𝑗 times total cell exposure 𝑃𝑃𝑖𝑖1,…,𝑖𝑖𝑛𝑛 ≥ 0 plus a bias  

(residual error) 𝐵𝐵𝑖𝑖1,…,𝑖𝑖𝑛𝑛 so that:

𝐿𝐿𝑖𝑖1,…,𝑖𝑖𝑛𝑛 = 𝐵𝐵𝑖𝑖1,…,𝑖𝑖𝑛𝑛 + 𝑃𝑃𝑖𝑖1,…,𝑖𝑖𝑛𝑛 ∏𝑗𝑗=1,…,𝑛𝑛𝑗𝑗 𝑋𝑋𝑗𝑗,𝑖𝑖𝑗𝑗

The factors are estimated through repeated iteration: 

𝑋𝑋𝑗𝑗,𝑘𝑘,1 = 1 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑡𝑡+1 =
∑𝑖𝑖𝑗𝑗=𝑘𝑘 𝐿𝐿𝑖𝑖1,…,𝑖𝑖𝑛𝑛

∑𝑖𝑖𝑗𝑗=𝑘𝑘 𝑃𝑃𝑖𝑖1,…,𝑖𝑖𝑛𝑛 ∏𝑙𝑙≠𝑗𝑗 𝑋𝑋𝑙𝑙,𝑖𝑖𝑗𝑗,𝑡𝑡
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Generalized Linear Models (GLM)

• Losses 𝐿𝐿𝑖𝑖 for each risk follow a distribution from the exponential family (Poisson, Normal, 

etc.).

• 𝐸𝐸 𝐿𝐿𝑖𝑖 = 𝑔𝑔−1 𝑋𝑋𝑖𝑖𝛽𝛽

• 𝑔𝑔 𝑥𝑥 is a strictly monotonic function, called the link function.

• 𝑋𝑋𝑖𝑖 is the vector of explanatory variables (usually dummy variables for categorical values 

of rating characteristics) for the particular risk.

• 𝛽𝛽 is a vector of parameters estimated, along with variance parameters of the 

distribution, through maximum likelihood as �̂�𝛽.
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Comparison Of Multiplicative Minimum Bias And 
GLM

• GLM completely specifies probability density.

• Multiplicative minimum bias only specifies expected value.

• Numerical values that solve (are a fixed point) the multiplicative 
minimum bias iteration equations will also produce the MLE for a 
corresponding GLM based on a logarithmic link function and Poisson 
distribution.
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The Argument Against Multiplicative BMB

• Multiplicative Bailey Minimum Bias formulas are replicated by GLM 
with a log-link function and a Poisson error distribution

• A GLM that includes this potential specification subsumes the 
multiplicative BMB approach.

• The GLM with log-link/Poisson is considered and the errors are not 
described will by the assumption.

• Therefore multiplicative BMB must be a bad choice.
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A Similar Line of Reasoning

• Measure the average temperature in January in Toronto. 
• Daily temperatures gathered and the mean is calculated

• The MLE of the mean of a Poisson distribution is equal to the mean of 
the observed data.

• But some of the observed temperatures are negative. Cleary the 
Poisson is a poor choice.

• The observed mean therefore is a bad measurement of the true 
underlying mean. 
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The Reasoning Flaw

• A true statement does not imply its converse.
True Statement Converse Statement

𝑋𝑋 ~Poisson(λ) => Best estimate of λ = �𝑋𝑋 Best estimate of λ = �𝑋𝑋 => 𝑋𝑋 ~Poisson(λ)
Wrong

GLM with log link and Poisson 
distribution => Multiplicative BMB 
formulas

Multiplicative BMB formulas =>
GLM with log link and Poisson 
distribution
Wrong
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The strength of Multiplicative BMB

• The strength of the Multiplicative BMB formulas lies not in the quality 
of assumptions of an implied GLM and maximizing likelihood.

• In fact, the associated assumptions in a GLM will often be invalidated. 
• The strength instead lies in the direct measurement of the items of 

interest adjusting for other variables.
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Direct Measurement
𝑦𝑦 = 𝑥𝑥1𝑥𝑥2𝑥𝑥3 … 𝑥𝑥𝑛𝑛 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�𝑥𝑥1 =
∑𝑦𝑦

∑𝑥𝑥2𝑥𝑥3 … 𝑥𝑥𝑛𝑛

�𝑥𝑥2 =
∑𝑦𝑦

∑𝑥𝑥1𝑥𝑥3 … 𝑥𝑥𝑛𝑛

�𝑥𝑥3 =
∑𝑦𝑦

∑𝑥𝑥1𝑥𝑥3 … 𝑥𝑥𝑛𝑛
etc.

22



Convergent Actuarial Services, Inc.

Identical Distribution?

• One of the common assumptions made in a GLM is that all 
distributional errors are identically distributed.

• Taken with a log link (to build a multiplicative model), the implication 
is that variance and higher moments scale with the mean. 

• Is this true?
• What is the impact of the assumption?
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(Actual-Modeled)/Modeled on Test Data 
(Bootstrapped)

The results were generally better using 
the Multiplicative Minimum Bias 
formulas

This despite “better” assumptions on the 
GLM using Log-Gaussian instead of Log-
Poisson

One of the reasons for this is that the 
identical distribution assumption simply 
isn’t true
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Incorporating Credibility Into Minimum Bias Versus GLM

For multiplicative minimum bias just insert credibility values 

0≤ 𝑍𝑍𝑗𝑗,𝑘𝑘 ≤ 1 , that can be determined any way you like, directly into the iterative equations:

𝑋𝑋𝑗𝑗,𝑘𝑘,1 = 1 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑡𝑡+1 = 1 − 𝑍𝑍𝑗𝑗,𝑘𝑘 + 𝑍𝑍𝑗𝑗,𝑘𝑘
∑𝑖𝑖𝑗𝑗=𝑘𝑘 𝐿𝐿𝑖𝑖1,…,𝑖𝑖𝑛𝑛

∑𝑖𝑖𝑗𝑗=𝑘𝑘 𝑃𝑃𝑖𝑖1,…,𝑖𝑖𝑛𝑛 ∏𝑙𝑙≠𝑗𝑗 𝑋𝑋𝑙𝑙,𝑖𝑖𝑗𝑗,𝑡𝑡

Note:  Including a base rate (not shown above) may be desirable to preserve overall balance of 
expected and actual losses.
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Incorporating Credibility Into Minimum Bias Versus GLM

For GLM inserting credibility is generally much more complicated with 

the primary approaches being:

• Adding random effects to produced a mixed effects model, a 

somewhat awkward process.

• Constructing a Bayesian Network model for Gibbs Sampling (MCMC), 

a straight forward but complex process.
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Incorporating Credibility Into Minimum Bias Versus GLM

The Bayesian Network model (that ultimately “failed” for reasons as yet 

unknown) for the case study:
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Case Study From Paper By Gross And Evans

• 371,123 records of medical malpractice payments from the National 
Practitioner Data Bank

• Three explanatory variables were used for modeling payment 
amounts: Original Year, Allegation Group and License Field

• Records randomly split into two sets for model fitting and validation, 
respectively

• A random sets of only 5,000 records for fitting models incorporating 
credibility
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Bootstrap 20 Quantiles Test Validation of  Minimum Bias Rating Factors
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Allegation Nature - Bootstrap Test Validation of  Minimum Bias Rating Factors
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Predictive Performance Statistics for Various Models
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Full Test of  Smaller Sample Bootstrap 20 Quantiles Test Validation of  
Minimum Bias (Credibility K = 10) Rating Factors
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Full Test of  Smaller Sample Allegation Nature - Bootstrap Test Validation of  
Minimum Bias (Credibility K = 10) Rating Factors

35



Convergent Actuarial Services, Inc.

Full Test of Smaller Sample Predictive Performance Statistics for Various Models
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Full Test of Smaller Sample Predictive Performance Statistics for Credibility 
Adjusted Multiplicative Minimum Bias
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Full Test of  Smaller Sample Bootstrap 20 Quantiles Test 
Validation of  Gibbs Sampled Rating Factors with Shrinkage
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Full Test of  Smaller Sample - Allegation Nature - Bootstrap Test Validation of  
Gibbs Sampled Rating Factors with Shrinkage
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Test Statistics for Gibbs Sampled Rating Factors
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Conclusions
• A model may perform very well predictively even when its assumptions are 

clearly and severely violated by data.

• Predictive performance is usually the relevant goal, not correct model 
assumptions.

• Predictive performance validation, rather than testing model assumptions, allows 
for simpler incompletely specified models such as multiplicative minimum bias.

• Incorporating credibility into minimum bias is much simpler, more flexible, and 
more transparent than incorporating credibility into the more complicated and 
completely specified GLMs.
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