Aspects of Wildfire and Flood: Modeling Hazard Frequency & Severity

Prepared by Steven Jakubowski of Impact Forecasting 2017 CAS Spring Meeting, May 24th 2017

Agenda

Section 1 Wildfire

- Section 2 Fort McMurray Recap
- Section 3 Inland Flooding
- Section 4 Coastal Flooding

Section 1: Wildfire

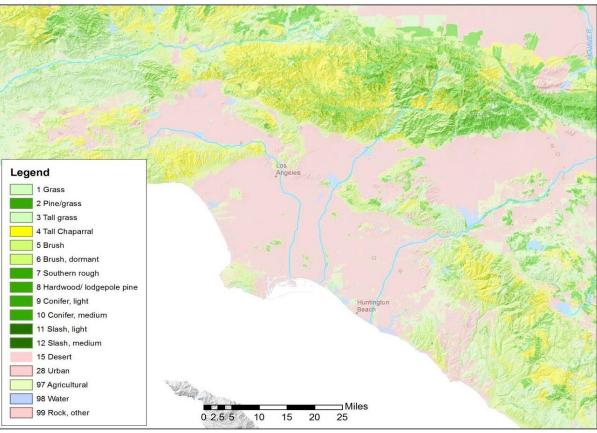
- Wildfire Model
- Historical Loss Recap

Wildfire Considerations

- Wildfire peril: On-going, costly, and on the increase
- Wildfire hazard is dependent upon:
 - Weather
 - Fuel
 - Exposure
- "Fire Siege" defined as multiple fires that burn simultaneously
- Property exposure increasing in the Wildland Urban Interface (WUI)
- Insurance contract language: Is it sensitive to fire duration and distance?

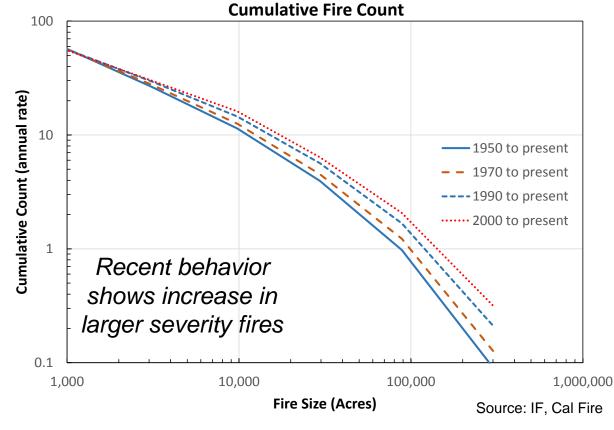
Extreme Fire Conditions Driven by Fire Weather

- Most large wildfires are driven by extreme winds
 - Foehn winds
 - a.k.a. Santa Ana, El Diablo, or Sundowner Winds
 - a.k.a. Chinook winds East of the interior west of North America
- Fire weather:
 - Strong winds (> 30mph)
 - Wind gusts can approach hurricane-force level
 - Low humidity (< 20%)
 - Low fuel moisture conditions



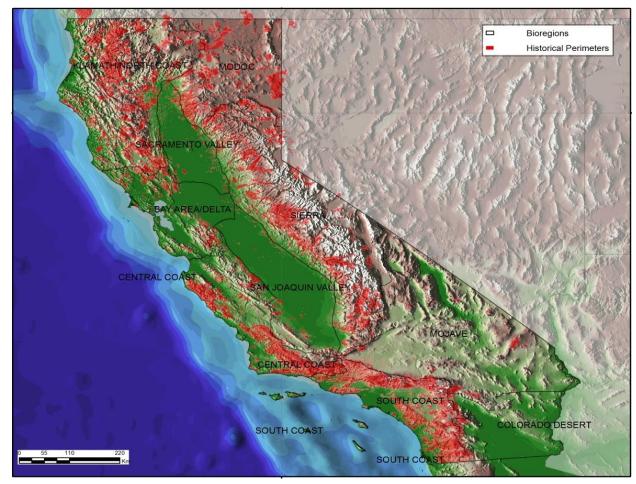
Los Angeles Region Dominated by Chaparral/Brush

- Surface Fuel examples
 - Brush
 - Chaparral
 - Timber/Conifers
 - Agricultural land use
 - Urban land use



Source: IF, Cal Fire

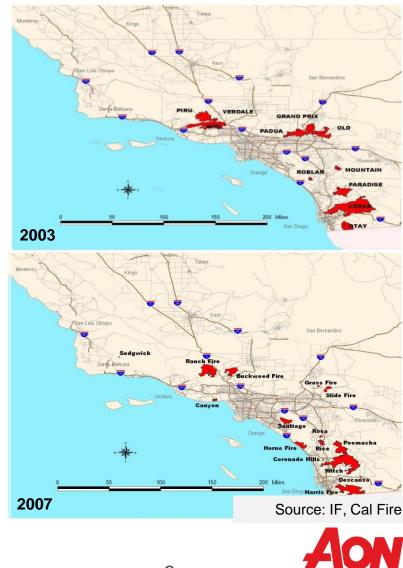
California's Recent Fires: Greater Size & Intensity


- Annualized wildfire frequency vs. severity (wildfire acreage)
 - Plot: 1950 to present, 1970 to present, 1990 to present, and 2000 to present

California's Historical Wildfire Experience

- Historical Wildfire Perimeters
 - Estimates of about
 130 wildfire
 occurrences per
 year (100+ acres)
- Wildfire occurrence is related to biological regimes that depend on elevation, vegetation, and fuel moisture levels

Source: IF, Cal Fire


California's Fire Conflagrations & Sieges

Wildfire Conflagration Examples

San Diego & Ventura	1970
Oakland Hills	1991
Los Angeles & Ventura	1993
Los Angeles & San Diego	2003
Los Angeles & San Diego	2007
Valley & Butte Fires	2015

Fire Sieges: Multiple Outbreaks / Brief Timeframe Examples

1993 17 fires in 11 days
2003 14 fires in 15 days
2007 12 fires in 23 days
2015 2 fires in 22 days

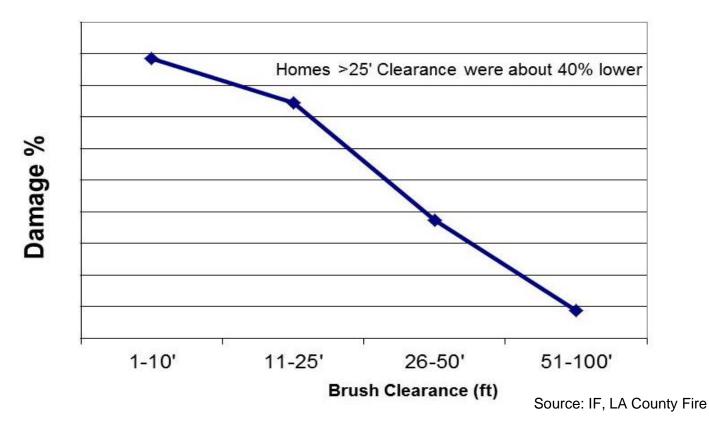
Empower Results[®]

Urban Interface Property Growth – Trending Now

- Property changes by wildfire region
- California property stock (housing units)
 - Fire regions (exposure within all historical wildfire perimeters)
 - Unaffected regions (exposure outside wildfire perimeters)

Exposure	Source: IF, U.S. Census, Cal Fire Annual Growth
Wildfire Regions	3.6%
Non Wildfire-Affected Regions	1.8%
Result	Growth in the fire affected regions is <u>2x greater</u> than unaffected regions

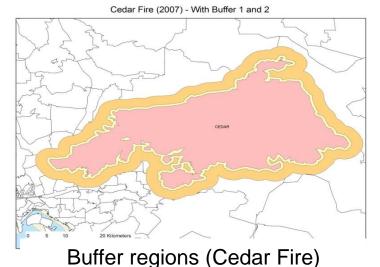
Wildfire Reconnaissance: Lake Tahoe (June 2007)



Complete Structure Loss and Surrounding Timber Fuels

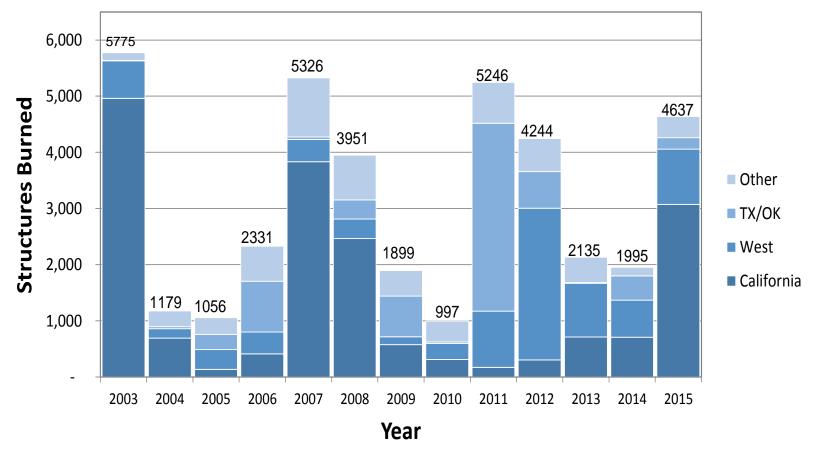
Firewise: Clearance = Loss Reduction

 Review of historical damage vs. brush clearance illustrates the expected reduction with clearance


Selected Fire Losses vs Clearance

Secondary Effects

- ISSUE: Claims occur inside and outside of the fire perimeter
 - Primary losses (structural loss) in perimeter
 - Secondary losses within buffer region
 - Additional losses from smoke, ember transport, time element (evacuation)
 - Damage ratio considerably lower vs. higher exposure
 - Non-structural secondary losses may occur within the fire perimeter



Smoke from 2003 fire siege

US Average Annual Loss of 3133 Structures

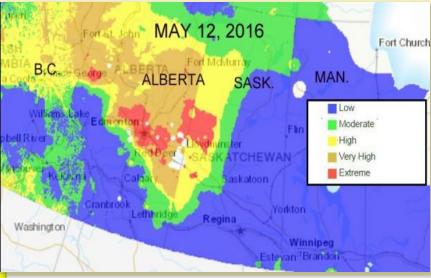
Source: IF, Cal Fire, USFS, ICS-209

Significant Loss Events in California: 2003 to 2015

Year	Incident	Loss (2015 USD)*
2003	Paradise, Cedar Old, Grand Prix, Padua	\$2,853 M
2007	Rice, Witch, Poomacha, Harris, Slide, Angora	\$2,213 M
2008	Freeway, Sayre	\$566 M
2015	Valley, Butte	\$1,231 M
	Total	\$6,863 M

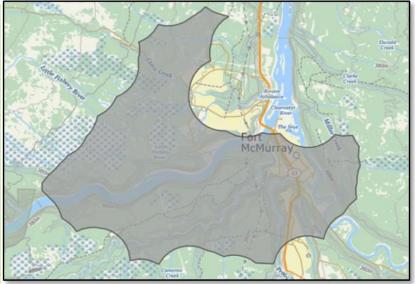
* Adjusted to 2015 using CPI, some losses are estimated

Source: IF, ISO-PCS, LA Times


Section 2: Fort McMurray Recap

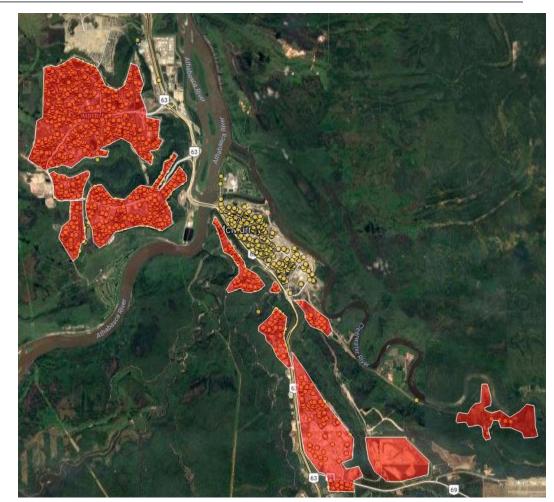
• Fort McMurray, Canada Wildfire of May 2016

Fort McMurray Wildfire Timeline


May 1	10:30 am MDT	Fire reported, mandatory evacuation ordered for some neighborhoods	usen ISH MBIA B(C a Coole
May 2		Fire moves away from Fort McMurray	Willia
May 3	Late AM	Local weather conditions change dramatically: Temps rise to 30°C (86°F), dropping humidity, shifting winds cause the localized fire to grow	rbell River (storver k Washingt
Sum	<mark>ner co</mark>	nditions in April: April 2016	
snow	<mark>exter</mark>	t for the month was the	
small	lest or	n record	
May 3	14:25 MDT	Flames and smoke head toward the city. Authorities and residents scramble	
	15:45 MDT	Residents are advised to head north or south of the city	

Fort McMurray Wildfire Timeline - Evacuation

May 3	18:31 MDT	Fort McMurray is placed under mandatory evacuation order
May 5		Fire estimated at 850 km ²
May 6		Fire estimated at 1,560 km ²
May 7		Fire estimated at >2,000 km ²
May 16		Air Quality Index (AQI) is at Level 38. AQI usually ranked 1 to 10, with 10 being the worst
May 16		Fire estimated at > 2,850 km ²
May 18		Government declares June 1^{st} resident return day. Fire burn area is estimated at > 3,500 km ²
May 19		Fire continues traveling east, has consumed an est. > 5,000 km ² equaling the total area of all fires in 2015
June 1		Evacuees return



Fire Perimeter on May 4 (Source: CWFIS)

Exposure Response

- Property exposure analyzed with GIS methods to compare exposure with fire perimeter
 - Fire complex has multiple fire perimeters
- Clients saw fire perimeters with real-time exposure
 - Accumulation reports were generated relative to the suite of fire perimeters

Source: Aon Benfield

Fort McMurray Loss Scenario vs. Other Events

	1	Trended					Estimated Loss in
Year	Quarter	Rank	Date	Location	Province	Event/Perils	2016 CDN000's
2016	2	1	May	Fort McMurray	Alberta	Wildfire	\$4,000,000
1998	1	2	Jan	Ontario/ Quebec	Ontario/ Quebec	Ice Storm	\$2,288,083
2013	2	3	June	S Alberta	Alberta	Flood	\$1,974,469
2013	3	4	July	GTA	Ontario	Rainstorm	\$1,080,176
2011	2	5	May	Slave Lake Alberta	Alberta	Wildfire	\$821,287
2005	3	6	Aug	Ontario	Ontario	Hailstorm/Sewer Backup	\$775,683
2010	3	9	Jul	SE Alberta	Alberta	Hail/ Wind	\$630,234
2012	3	7	Aug	Calgary	Alberta	Flood, Hail and Wind	\$612,853
2014	3	8	Aug	Central Alberta	Alberta	Hail/ Wind	\$603,034
1991	3	10	Sep	Calgary	Alberta	Hailstorm	\$549,352

(Source: @ CBCEyeopener)

Damage in Fort McMurray

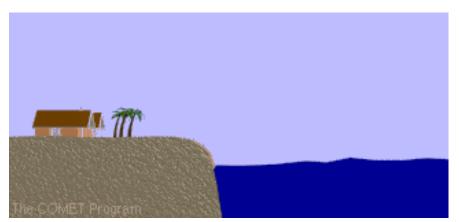
Fort McMurray Loss Scenario vs. Other Events

- Fort McMurray costliest event on record for Canada (est. CDN 4 Billion insured loss)
 - Ice Storm of 1998 and Calgary Floods of 2013 (trended for inflation only) approx. same insured loss as Fort McMurray event

Question: Where can the next Fort McMurray arise in Canada?

High concentration of population and exposed values in remote areas

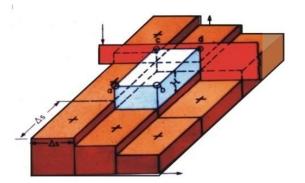
Section 3: FLOOD

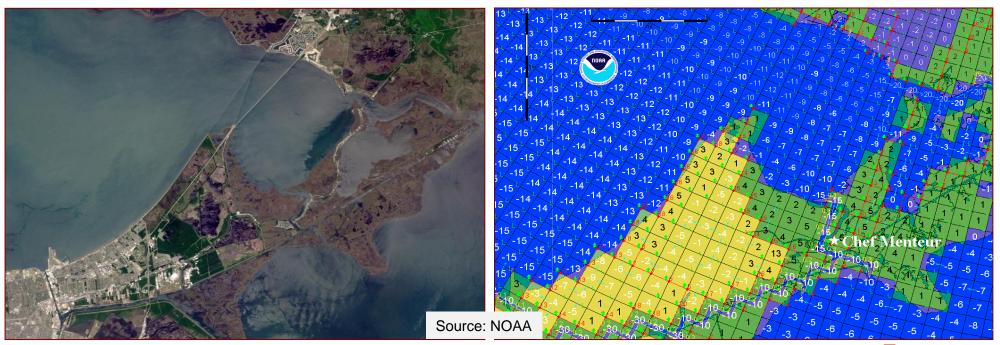

US Coastal Flood Modeling

Storm Surge Model Characteristics

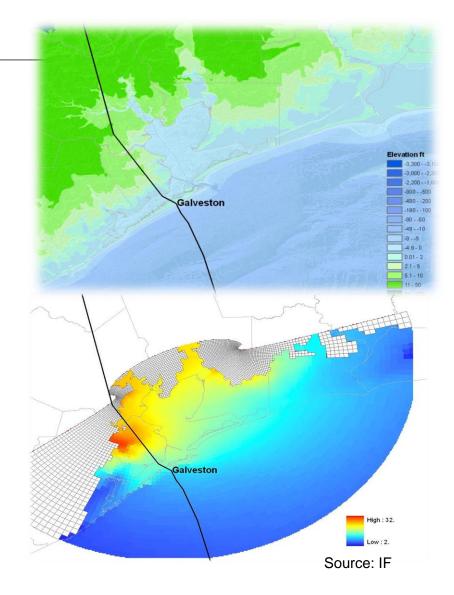
Hurricane Storm Surge

- Surge modeling should address:
 - Entire tropical storm lifecycle
 - Bathymetry offshore / topographical onshore
 - Consider all land-falling storms in the stochastic suite
 - Encompass all land-falls for a given storm (first, second, third strike)
 - Use the same stochastic event set as the wind set
- Common storm surge models
 - SLOSH (National Hurricane Center)
 - ADCIRC (Academic communities)


Deep Coastal Bathymetry Hazard

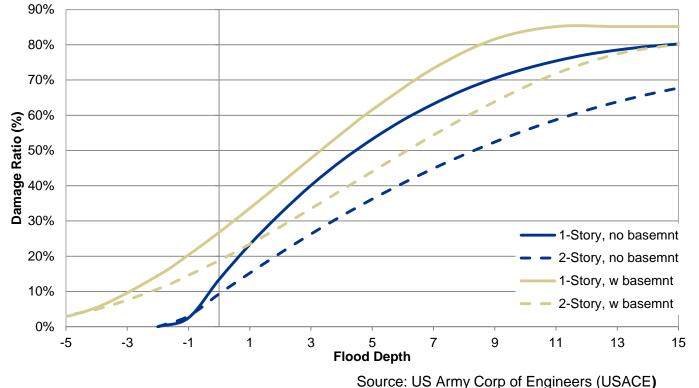

Shallow Coastal Bathymetry Hazard

Storm Surge Modeling


- Analysis applied to gridded mesh
- Resulting output provides surge heights relative to vertical datum

Surge Height Generation

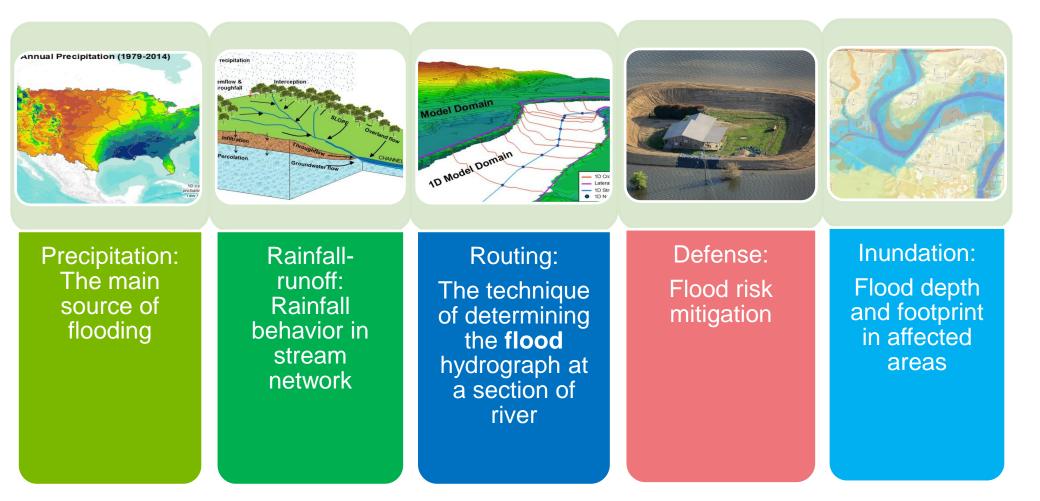
- Model surge height generation for a selected storm track. Model incorporates:
- Storm strength, direction, and radius of maximum winds
- Physical characteristics to transport surge throughout the lifecycle for each step
- Output retained across grid mesh, stored in a data warehouse



Vulnerability Example – Depth Damage Functions

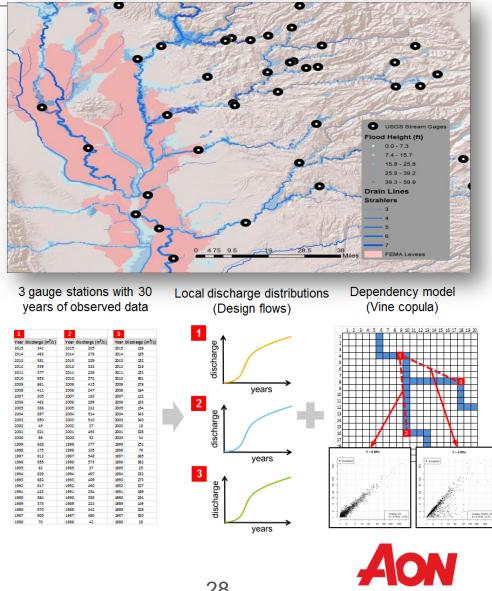
- Correlates inundation with expected mean damage ratio
- Uncertainty around mean can be large (CV of 50% or more)

- Inundation is measured relative to first floor
- USACE functions may be based on limited data sets



Section 4: Inland Flooding

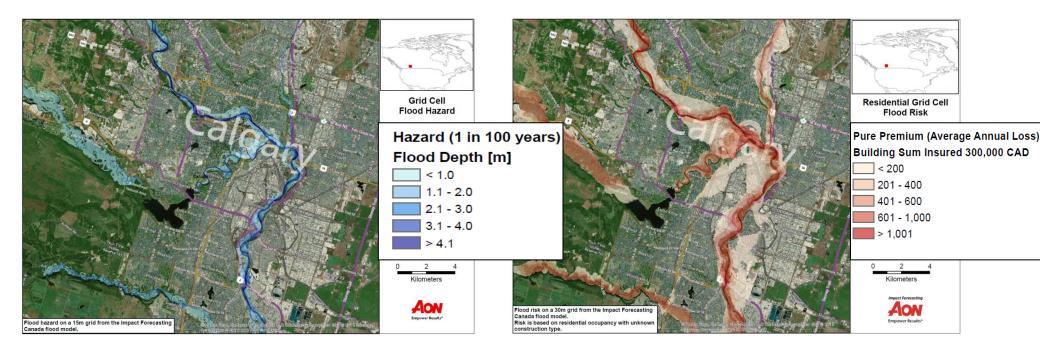
Inland Flood Modeling


Inland Flood Hazard Simulation Approach

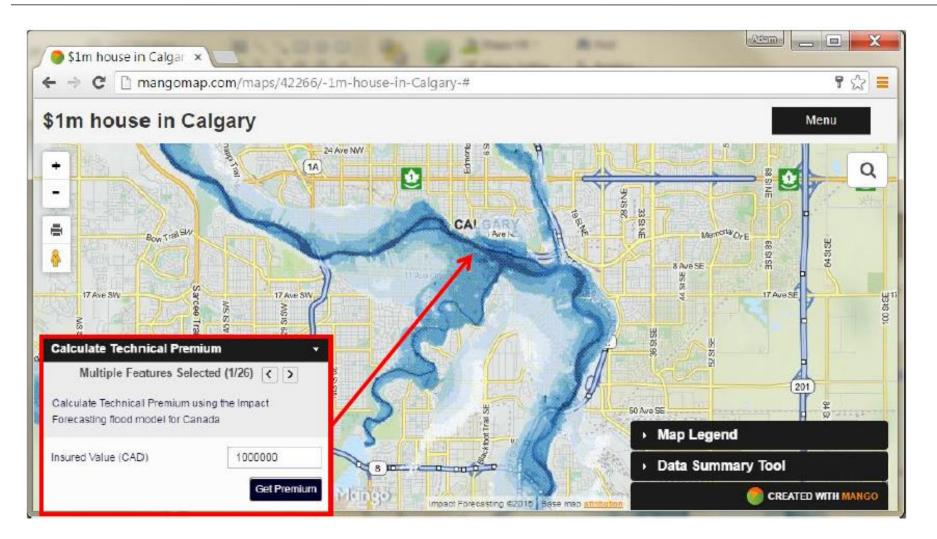
Probabilistic Flood Model – Key Aspects

- Flood maps for a range of return periods are model hazard core
 - Modelled by 2D hydrodynamic model at high resolution
- Stochastic event set provides realistic flood scenario views in given territory
 - Simulated from a dependency model based on hydrological observations and state-of-art multivariate statistical methods
- Vulnerability module provides link between hazard and damage

Empower Results®


Flood Hazard Map vs. Probabilistic AAL Map

Flood map


- Available for a range of return periods
- In / out flood zone, inundation depth
- Does not reflect realistic flood events
- Does not give any rate indication

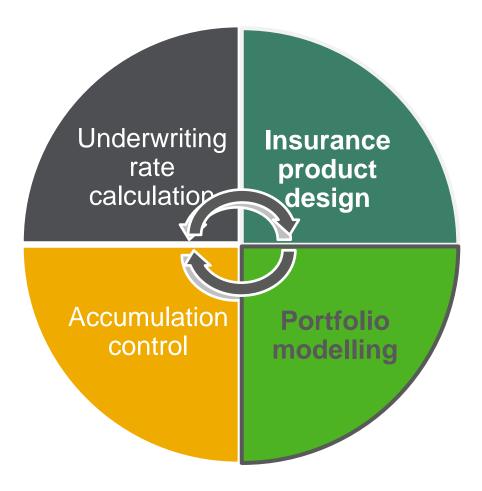
Probabilistic model (risk map)

- Depends on property parameters
- Pure premium as % of insured value
- Based on realistic events catalogue
- Gives rate indication


Underwriting Rate Calculation - Selected Site

Underwriting Rate Calculation

- Probabilistic models based on high resolution hazard maps can be used for location-level flood loss (pure premium) assessment
 - Differentiated by risk type property parameters
 - Possible inclusion of multiple sub-perils (flood plain, off-flood plain)
- Risk data for rating by high resolution grid, postal code, or zones

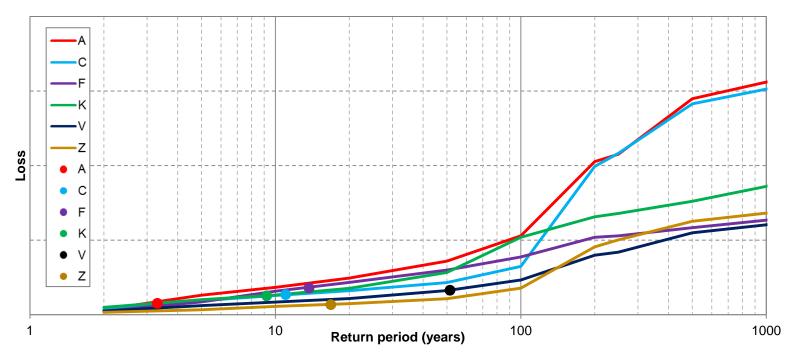


IF Variable resolution lat/long grid

IF Orange County AAL Grid

Probabilistic Flood Model – Use Cases

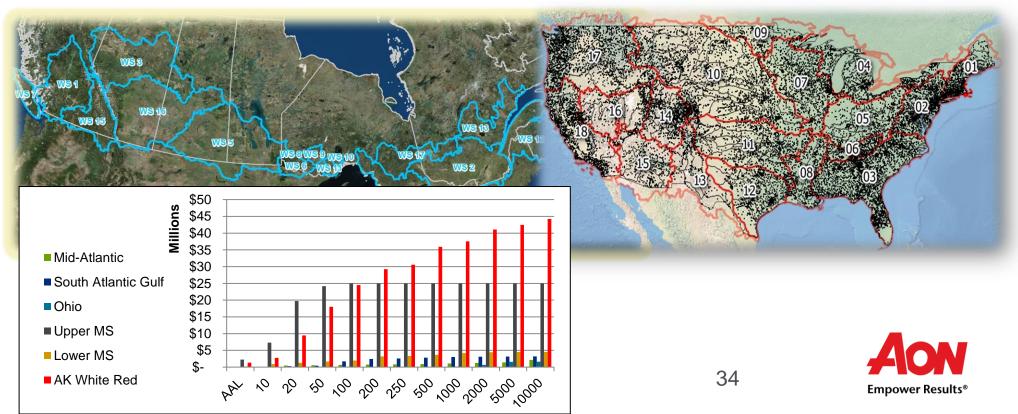
Different market evolutions – different starting points


United States

- Highly regulated, established market
- Canada
 - Fresh market looking for technical solutions to flood design products

Portfolio Modeling

- Traditional use and primary purpose of probabilistic models
- Provides aggregate view on the portfolio losses
- Assessment of solvency capital requirement or reinsurance capacity

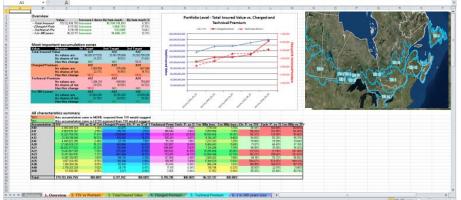


Modeled Flood Losses EP Curve with 2013 Alberta Flood Event

Accumulation Control

- Identify exposure clusters as potential sources of big catastrophe loss
 - Usual use of administrative zones and sums insured
- Enhanced accumulation using model support loss accumulation
- Effective accumulation control requires zones reflecting the underlying hazard behavior – watersheds

Accumulation Control Workflow


Accumulation values / metrics

Zone Name	Exposed TIV	Exp. TIV as % of total		Pure Premium	PP as % of total	PP vs	s. ETIV
Newfoundland and Labrador	5,597,784,492	1.49%	-F	239,232	0.35%		23%
Prince Edward Island	296,784,663	0.08%		4,671	0.01%		9%
Nova Scotia	9,046,791,873	2.41%	J	346,624	0.50%		21%
New Brunswick	5,763,710,234	1.53%		1,723,422	2.51%		164%
Quebec	109,931,790,013	29.24%		31,875,629	46.39%		159%
Ontario	146,964,970,963	39.09%		16, <mark>6</mark> 39,604	24.21%		62 %
Manitoba	11,745,326,355	3.12%		5,307,024	7.72%		247%
Saskatchewan	1,205,095,988	0.32%	Г	59,593	0.09%		27%
Alberta	51,042,498,272	13.58%		5,268,911	7.67%		56%
British Columbia	34,366,483,865	9.14%		7,252,256	10.55%		115%
Yukon	NA	NA	١	٨A	NA	NA	
Northwest Territories	NA	NA	١	١A	NA	NA	
Nunavut	NA	NA	٢	٨A	NA	NA	
Total	375,961,236,718	100%		68,716,967	100%		

Accumulation regions

Report design

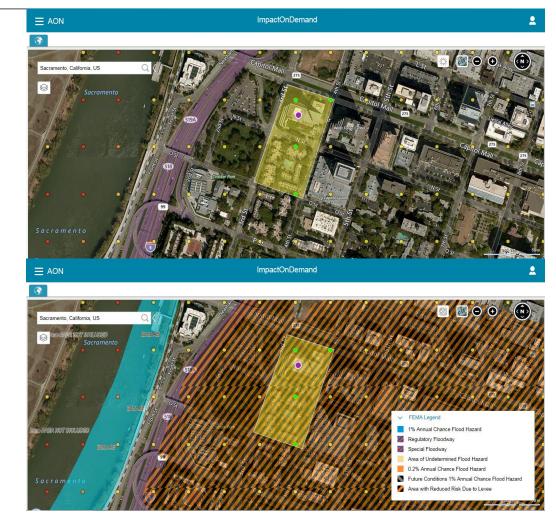
Workflow automation

Your Data Warehouse m

SO

1 or 0 click automated model run in ELEMENTS the background

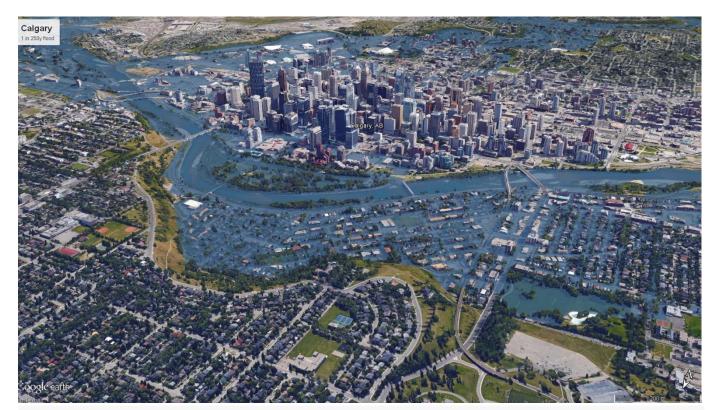
ELEMENTS AP For Accumulation Mana		AON
Select ELEMENTS Server:	Connect!	
Select ELEMENTS input:		
Covert analysis settings:		
Dreakouts_Datrict:0 Dreakouts_Nurricipality:0 Dreakouts_Creats:1 Dreakouts_Zpende:0 Dreakouts_Locator:1		*
Our Collector New York	0.1.1.1.0.1.	datta.
Start Calculation Now	Schedule Calcu	lation
API loge:		


Standard report produced and shared

Notional AAL Grid Precalculated for Underwriting

- Building & contents loss costs at every 100 meter lat/long point across the U.S.
 - Site elevation
 - IF flood plain depths
- Confirm exposure location and geocoding
- Reposition geocode if necessary
- Overlay FEMA flood plains
- Calculate technical premium

No data preparation or 'modelling-on-the-fly' required


Key Benefits

- Probabilistic models are effective tools for rate calculation, evaluating the effect of insurance conditions (limits and deductibles) and risk accumulations
- When compared with hazard maps, probabilistic models offer a true rating recommendation
- Accumulation using physically defined zones allows better utilisation of underwriting limits
- Unification of tools and data provides a key to comprehensive and consistent workflow for primary underwriting, portfolio monitoring, and modelling,

Questions?

Steven Jakubowski Impact Forecasting +1.312.381.5890 Steven.Jakubowski@ aonbenfield.com

1 in 250 years flood plain map for Calgary

