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Learning Objectives

1 Nonparametric Regression

2 Missing May Cause Data to Be Biased

3 Biased Data

4 Types of Missing Data (Typically Require Different Actions)

5 Missing May Be Destructive

6 How to Deal with Missing

7 Examples
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Nonparametric Regression

Regression

Given a sample from (X,Y), the problem of regression is to
predict a response Y given a predictor X.

Parametric (Linear) Regression:

Y := β0 + β1X + σε where E{ε|X} = 0.

The problem of prediction is converted into estimation of
parameters β0 and β1.

Nonparametric Regression:

Y := m(X) + σ(X)ε where m(x) := E{Y|X = x}.

The problem of prediction is converted into estimation of the
regression function m(x).
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Nonparametric Regression

Linear and Nonparametric Regression, nclaims = 124, nmonths = 108.
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Nonparametric Regression

Simulated Bernoulli and Poisson Regression, n = 200
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Nonparametric Regression

Nonparametric Regression: Body Mass Index versus Beta-Carotene
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Biased Data

Example of Missing That Creates Biased Data

Suppose that a researcher would like to know the distribution of
the ratio of alcohol in the blood of liquor-intoxicated drivers
traveling along a particular highway. The data are available from
routine police reports on arrested drivers charged with driving
under the influence of alcohol. Because a drunk driver has a
larger chance of attracting the attention of the police, it is clear
that the data are length-biased toward higher ratios of alcohol in
the blood. Thus, the researcher should make an appropriate
adjustment in estimation of an underlying density of the ratio of
alcohol in the blood of all intoxicated drivers.

The available data are created by a missing mechanism which is
unknown.
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Types of Missing Data

Three Main Types of Missing Data

1 Missing completely at random (MCAR)
Missing a value occurs by a chance that does not depend on the
missing variable. No destruction of information occurs.
Typically “ignore missing” (complete case) approach is optimal.

2 Missing at random (MAR)
Missing a value occurs by a chance that depends only on always
observed variables. No “complete” destruction of information
containing in data occurs. Method of optimal estimation
depends on a model.

3 Missing not at random (MNAR)
Missing a value occurs by a chance depending on data. MNAR
implies destruction of information contained in underlying data.
Additional data/information, which converts MNAR into MAR,
is required for consistent estimation.
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Nonparametric Regression

Regression with Missing Responses - MNAR

The underlying regression model is

Y = m(X) + σ(X)ε.

Available sample is from (AY,A,X) where: (i) The availability
variable A is Bernoulli; (ii) The availability likelihood is

P(A = 1|X,Y) = h(Y).

The joint density is (set ψ(y, x) := h(y)f Y|X(y|x))

f X,AY,A(x, ay, a) = [ψ(y, x)f X(x)]a[(1−
∫ ∞
−∞

ψ(y, x)dy)f X(x)]1−a

We can estimate only the product ψ(y, x) = h(y)f Y|X(y|x), and this
implies the MNAR (destructive missing) unless h(y) is known.
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Nonparametric Regression

Regression with Missing Responses - MAR

Assume that the availability likelihood is

P(A = 1|X,Y) = h(X).

The joint (mixed) density of the triplet is

f X,AY,A(x, ay, a) = [f Y|X(y|x)h(x)f X(x)]a[(1− h(x))f X(x)]1−a.

In a subsample of complete cases the “new” design density is
gX(x) = h(x)f X(x)/q, where q :=

∫ 1
0 h(x)f X(x)dx = P(A = 1). This

is what allows us to use only complete cases.
Binomial number N :=

∑n
l=1 Al of complete cases; sequential

estimation looks attractive.
Traditional Methods: Imputation, Maximum Likelihood, EM,
etc.; Vast Literature; Controversy.
MAR typically does not affect rate of convergence, and the rate is
the only issue that the mainstream literature is concerned about.
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Nonparametric Regression

Regression with Missed Responses, n = 441, N = 312
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Nonparametric Regression

Bernoulli and Poisson Regressions with Missed Responses, n = 200
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Nonparametric Regression

Regression with MAR Predictors

A sample is observed from (Y,AX,A) and the aim is to estimate
m(x) = E{Y|X = x}.

It is assumed that the availability likelihood is (MAR)

P(A = 1|X,Y) = P(A = 1|Y) = h(Y).

The joint density is

f AX,Y,A(ax, y, a) = [f Y|X(y|x)h(y)f X(x)]a[(1−h(y))f Y(y)]1−a, a ∈ {0, 1}.

We could use only complete cases if h(y) and f X(x) were known.
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Nonparametric Regression

Regression Estimation for MAR Predictors

For the case of a complete case when A = 1,

f AX,Y,A(x, y, 1) = f Y|X(y|x)h(y)f X(x).

Steps in regression estimation:
1 Estimate the density of response f Y(y) for y = Yl where Al = 1.

Note: This is the only place where we need all n observations!
(May use a smaller extra sample from Y.)

2 Estimate the availability likelihood h(y) for y = Yl where Al = 1.

3 Estimate the design density f X(x) for x = Xl where Al = 1.

4 Estimate the regression function based on complete cases.
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Nonparametric Regression

Regression with Missed Predictors, n = 441, N = 312
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Nonparametric Regression

GPA (Y) versus Credit Score (X), Class A: n = 94, N = 65.
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Nonparametric Regression

GPA (Y) versus Credit Score (X), Class B: n = 58, N = 47.
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