What an Actuary Should Know About

Nonparametric Regression

With Missing Data

May 2017

Sam Efromovich

Endowed Professor Head of Actuarial Program The University of Texas at Dallas, USA

Regression

Parametric (Linear) Regression

Nonparametric Regression

Linear vs. Nonparametric Regression

Automobile Insurance Claims

Age of Operator

Linear vs. Nonparametric Regression

US Monthly Housing Starts

Simulated Bernoulli and Poisson Regression

Likelihood of Claim

Simulated Bernoulli and Poisson Regression

Number of Claims

х

Nonparametric Regression: Body Mass Index vs. Beta Carotene

Example of Missing that Creates Biased Data

Regression with Missing Responses - MNAR

$$\Upsilon = m(X) + \sigma(X)\varepsilon$$

The underlying regression model

Available sample is from: $(A\Upsilon, A, X)$

A is the availability variable (Bernoulli)

Availability likelihood: $\Box(A=1|X,\Upsilon) = h(\Upsilon)$

Regression with Missing Responses - MNAR

 $\Upsilon = m(X) + \sigma(X)\epsilon \qquad \qquad The underlying regression model$ $Available sample is from: (A\Upsilon, A, X)$ A is the availability variable (Bernoulli)

Availability likelihood: $\square(A=1|X,\Upsilon) = h(\Upsilon)$

The joint density is (set $\psi(y,x) := h(y)f^{\gamma|X}(y|x)$)

Regression with Missing Responses - MNAR

• The underlying regression model is

$$Y = m(X) + \sigma(X)\varepsilon.$$

• Available sample is from (*AY*, *A*, *X*) where: (i) The availability variable *A* is Bernoulli; (ii) The availability likelihood is

$$\mathbb{P}(A=1|X,Y)=h(Y).$$

• The joint density is (set $\psi(y, x) := h(y)f^{Y|X}(y|x)$)

$$f^{X,AY,A}(x,ay,a) = [\psi(y,x)f^X(x)]^a [(1 - \int_{-\infty}^{\infty} \psi(y,x)dy)f^X(x)]^{1-a}$$

• We can estimate only the product $\psi(y, x) = h(y)f^{Y|X}(y|x)$, and this implies the MNAR (destructive missing) unless h(y) is known.

Regression with Missing Responses - MAR

• Assume that the availability likelihood is

 $\mathbb{P}(A=1|X,Y)=h(X).$

• The joint (mixed) density of the triplet is

 $f^{X,AY,A}(x,ay,a) = [f^{Y|X}(y|x)h(x)f^{X}(x)]^{a}[(1-h(x))f^{X}(x)]^{1-a}.$

- In a subsample of complete cases the "new" design density is $g^X(x) = h(x)f^X(x)/q$, where $q := \int_0^1 h(x)f^X(x)dx = \mathbb{P}(A = 1)$. This is what allows us to use only complete cases.
- Binomial number $N := \sum_{l=1}^{n} A_l$ of complete cases; sequential estimation looks attractive.
- Traditional Methods: Imputation, Maximum Likelihood, EM, etc.; Vast Literature; Controversy.
- MAR typically does not affect rate of convergence, and the rate is the only issue that the mainstream literature is concerned about.

Missed Responses

Bernoulli and Poisson Regressions with Missed Responses, n = 200

Likelihood of Claim

N = 130

N = 140

Regression with MAR Predictors

- A sample is observed from (*Y*, *AX*, *A*) and the aim is to estimate *m*(*x*) = E{*Y*|*X* = *x*}.
- It is assumed that the availability likelihood is (MAR)

$$\mathbb{P}(A = 1 | X, Y) = \mathbb{P}(A = 1 | Y) = h(Y).$$

• The joint density is

 $f^{AX,Y,A}(ax,y,a) = [f^{Y|X}(y|x)h(y)f^X(x)]^a [(1-h(y))f^Y(y)]^{1-a}, a \in \{0,1\}.$

• We could use only complete cases if h(y) and $f^X(x)$ were known.

Regression Estimation for MAR Predictors

For the case of a complete case when A = 1,

$$f^{AX,Y,A}(x,y,1) = f^{Y|X}(y|x)h(y)f^X(x).$$

Steps in regression estimation:

- Estimate the density of response f^Y(y) for y = Y_l where A_l = 1.
 Note: This is the only place where we need all *n* observations!
 (May use a smaller extra sample from Y.)
- 2 Estimate the availability likelihood h(y) for $y = Y_l$ where $A_l = 1$.
- Setimate the design density $f^X(x)$ for $x = X_l$ where $A_l = 1$.
- Estimate the regression function based on complete cases.

Missed Predictors

GPA (Y) versus Credit Score (X), Class A: n = 94, N = 65.

1.0

GPA (Y) versus Credit Score (X), Class B: n = 58, N = 47.

Estimated h(y)

Design Density

Sam Efromovich

Endowed Professor, Head of Actuarial Program The University of Texas at Dallas, USA

efrom@utdallas.edu

(Research is supported by the NSF, NSA and CAS-SOA)

May 2017