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Univariate excess losses

Let X be a random loss variable taking nonnegative values and
having cumulative distribution function F and survival function S.
Then the limited loss up to a retention level d is defined by

Xd
0 =

{
X if X ≤ d
d if X > d

.
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Univariate excess losses

The loss in the layer (d, l) is defined by

X l
d = X l

0 −Xd
0 =


0 if X ≤ d
X − d if d < X ≤ l
l − d if X > l

.
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Univariate excess losses

The excess loss over a limit d is defined by

X∞d = (X − d)+ = X −Xd
0 =

{
0 if X ≤ d

X − d if X > d
.

Table M charge

φ(d) =
E[X∞d ]

E[X]
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Introduction

Excess of Loss

The mathematics of excess losses has been studied extensively
in the property and casualty insurance literature.

See for example, Lee (1988) and Halliwell (2012), Bahnemann
(2017).
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Univariate excess losses

The first moment of the excess loss has been tabulated into
the Table of Insurance Charges (Table M) for use in NCCI
retrospective rating plan.

Higher moments of excess losses can be used to measure the
volatility of excess losses

They seem to be much harder to obtain and formulas for
them are not readily available in the property casualty
actuarial literature. One could refer to Section 2 of Miccolis
(1977), Bahnemann (2017).
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Purpose of the talk

Introduce a simple formula for calculating the higher moments
of the excess losses

Show that the higher moments can be obtained directly from
the Table of Insurance Charges (Table M).

Generalize the concept of excess losses to a bivariate scenario.

Show some applications of the theory of bivariate excess
losses.
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Univariate excess losses

It is well known that (see for example, Lee 1985)

E(Xd
0 ) =

∫ d

0
S(u)du.

Because X l
d = X l

0 −Xd
0 , we

E[X l
d] =

∫ l

d
S(u)du.

and

E[X∞l ] =

∫ ∞
l

S(u)du. (1)
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Univariate excess losses

Figure 1: Expected excess losses.
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Univariate excess losses

Consider problem 4 of Brosius (2002). Let X represent the
loss ratio for a homogeneous group of insureds and was
observed to have values 30%, 45%, 45% and 120%
respectively.

Let Y = X/E(X) be the corresponding entry ratios and thus
take values 0.5, 0.75, 0.75, 2.

Then the insurance charge at entry ratio r is just the mean
excess loss function of Y evaluated at r , i.e.,

φ(d) =
E[X∞d ]

E[X]
= E[Y∞r ] = E[(Y − r)+] = R1(r) =

∫ ∞
r

SY (y)dy.
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Univariate excess losses

Figure 2: THe survival function of Y .
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Univariate excess losses

Table 1: Calculating Table M Charge

Entry ratio (r) # of risks SY (r) R1(r)

0 0 1 1
0.25 0 1 0.75

0.5 1 0.75 0.5
0.75 2 0.25 0.3125

1 0 0.25 0.25
1.25 0 0.25 0.1875

1.5 0 0.25 0.125
1.75 0 0.25 0.0625

2 1 0 0
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Univariate excess losses

Figure 3: Table M charge: R1(r).
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Univariate excess losses

It is known in the literature that the higher moments of the excess
loss X∞1 can be calculated iteratively from R1(l) as follows:

Proposition 2.1

Let
R1(l) = E[X∞l ],

and for i ≥ 1, let

Ri+1(l) =

∫ ∞
l

Ri(u)du.

Then
E[(X∞l )i] = (i!)Ri(l), for i ≥ 1. (2)
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Univariate excess losses

Proof: We use mathematical induction. For i = 1, equation (2) is
true by definition. Assume that it is true for i, then

Ri+1(l) =

∫ ∞
l

Ri(u)du

=

∫ ∞
l

1

i!
E[(X − u)i+]du

=
1

i!
E
[∫ ∞

l
(X − u)i+du

]
=

1

(i+ 1)!
E
[
(X − l)i+1

+

]
=

1

(i+ 1)!
E
[
(X∞l )i+1

]
. �
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Univariate excess losses

The second moment of the excess losses E
[
(Y∞r )2

]
may

simply be obtained by numerically integrating R1(r) and then
multiplying the result by 2!.

Realizing that R1(r) is piecewise linear between entry ratio
values, the numerical integration is implemented by

R2(r) =
∑
k≥0

R1(r + k∆) +R1(r + (k + 1)∆)

2
∆,

where ∆ is the interval between entry ratio values.
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Univariate excess losses

Table 2: Calculating higher moments of excess losses using Table M

(r) # of risks R1(r) R2 in layer R2(r) E[(Y∞r )2]

0 0 1 0.21875 0.671875 1.34375
0.25 0 0.75 0.15625 0.453125 0.90625

0.5 1 0.5 0.1015625 0.296875 0.59375
0.75 2 0.3125 0.0703125 0.1953125 0.390625

1 0 0.25 0.0546875 0.125 0.25
1.25 0 0.1875 0.0390625 0.0703125 0.140625

1.5 0 0.125 0.0234375 0.03125 0.0625
1.75 0 0.0625 0.0078125 0.0078125 0.015625

2 1 0 0 0 0
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Univariate excess losses

The second moment of the layered losses E
[
(X l

d)
2
]
is also of

interest. We have

E
[
(X l

d)
2
]

= E
[
(X∞d −X∞l )2

]
= E

[
(X∞d )2

]
+ E

[
(X∞l )2

]
− 2E [(X∞d )(X∞l )]

= E
[
(X∞d )2

]
+ E

[
(X∞l )2

]
− 2E

[
(X l

d +X∞l )(X∞l )
]

= E
[
(X∞d )2

]
− E

[
(X∞l )2

]
− 2E

[
(X l

d)(X
∞
l )
]
. (3)
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Bivariate excess losses

Let (X,Y ) be a pair of random loss random variables with
joint distribution function F (x, y) = P(X ≤ x, Y ≤ y) and
joint survival function S(x, y) = P(X > x, Y > y).

We intend to calculate

E[X lx
dx
Y
ly
dy

]
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Bivariate excess losses

Proposition 3.1

E[X lx
dx
Y
ly
dy

] =

∫ lx

dx

∫ ly

dy

S(u, v)dvdu. (4)
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Bivariate excess losses

Proof:

first notice that

X lx
dx
Y
ly
dy

=

∫ lx

dx

I(X > u)du

∫ ly

dy

I(Y > v)dv

=

∫ lx

dx

∫ ly

dy

I(X > u)I(Y > v)dvdu.

Then we have

E
[
X lx
dx
Y
ly
dy

]
=

∫ lx

dx

∫ ly

dy

E [I(x > u)I(y > v)] dvdu

=

∫ lx

dx

∫ ly

dy

S(u, v)dvdu. �
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Bivariate excess losses

With this, the covariance between X lx
dx

and Y
ly
dy

is given by

Cov(X lx
dx
, Y

ly
dy

) =

∫ lx

dx

∫ ly

dy

S(u, v)dvdu−
∫ lx

dx

Sx(u)du

∫ ly

dy

Sy(v)dv,

A somewhat similar formula can be found in Dhaene et. al.
(1996).
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Bivariate excess losses

As shown in Denuit et. al (1999), higher joint moments of the
bivariate excess losses can be computed using the following result.

Proposition 3.2

Let

R11(lx, ly) =

∫ ∞
lx

∫ ∞
ly

S(u, v)dvdu (5)

and for (i, j) > (1, 1), let

Rij(lx, ly) =

∫ ∞
lx

Ri−1,j(u, ly)du =

∫ ∞
ly

Ri,j−1(lx, v)dv.

Then,

Rij(lx, ly) =
1

i!j!
E[(X∞lx )i(Y∞ly )j ]. (6)
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Application 1: Correlation among layers

Setting X = Y , we have

S(u, v) = P [X > u, Y > v] = P [X > max(u, v)] = Sx(max(u, v)).

Then for two non-overlapping layers (d1, l1) and (d2, l2) of X
with d2 ≥ l1, we have

E[X l1
d1
X l2
d2

] =

∫ l1

d1

∫ l2

d2

S(u, v)dvdu

=

∫ l1

d1

∫ l2

d2

Sx(v)dvdu

= (l1 − d1)E[X l2
d2

]. (7)
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Application 1: Correlation among layers

Consequently

Cov[X l1
d1
X l2
d2

] =
(
l1 − d1 − E[X l1

d1
]
)
E[X l2

d2
], (8)

which is Equation (39) of Miccolis (1977).

E[X l
dX
∞
l ] = (l − d)E[X∞l ]. (9)
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Application 1: Correlation among layers

applying it to (3) yields

E
[
(X l

d)
2
]

= E
[
(X∞d )2

]
− E

[
(X∞l )2

]
− 2(l − d)E[X∞l ]. (10)

Notice that all three terms on the right hand side of (10) can
be obtained from Table M.
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Application 2: Bivariate Table M

Assume that one observes a sample of a pair of bivariate loss ratio
random variables (X,Y ) as shown in the Table 3.

X 0.6 0.8 1.2 1.4

Y 0.4 0.6 1.4 1.6

Table 3: Sample of Bivariate Loss Ratios

Spread Sheet
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Application 3: Bivariate Pareto Distribution

Following Wang (1998), assume that there exists a random
parameter Λ such that for i = 1, 2, Xi|Λ = λ are independent
and exponentially distributed with rate parameter λ/θi.

Assume that Λ follows a Gamma (α, 1) distribution with
moment generating function MΛ(t) = (1− t)−α. Then the
unconditional distribution of (X1, X2) is a bivariate Pareto
with the joint survival function

S(x, y) =

(
1 +

x

θ1
+
y

θ2

)−α
. (11)
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Application 3: Bivariate Pareto Distribution

E(X∞l ) =
θ1

(α− 1)

(
1 +

l

θ1

)−α+1

,

E(X∞lx Y
∞
ly ) =

θ1θ2

(α− 1)(α− 2)

(
1 +

lx
θ1

+
ly
θ2

)−α+2

,

E[(X∞l )2] = 2

∫ ∞
l

(x− l)
(

1 +
x

θ1

)−α
dx

=
2θ2

1

(α− 1)(α− 2)

(
θ1 + l

θ1

)−α+2

.
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Application 3: Bivariate Pareto Distribution

Figure 4: The correlation between X∞
l and Y∞

l as a function of l.
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Application 4: Per-occurrence and stop–loss coverage

This example follows the one in Section 2 of Homer and Clark
(2002) with some modifications. Assume that the size of
Workers Compensation losses from a fictional large insured
ABC, denoted by Z, follow a Pareto distribution with the
survival function

S(x) =
(

1 +
x

θ

)−α
,

where α = 3 and θ = $100, 000.

Assume that the number of losses N follows a negative
binomial distribution with parameters where β = 0.2 and
r = 25.
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Application 4: Per-occurrence and stop–loss coverage

As an actuary of XYZ, you are asked to consider a
per–occurrence coverage of $50, 000 excess of d0 and then a
stop–loss coverage on an aggregate basis of $500, 000 excess
of d1 .

You are trying to determine an optimal combination of d0 and
d1, so that your objective function– the ratio between the
expected payments and the standard deviation of the
payments, – is maximized.
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Application 4: Per-occurrence and stop–loss coverage

The amount that ABC has to pay per occurrence:

ZA = Zd00 + Z∞d0+50.

The amount that XYZ has to pay per occurrence:

ZX = Zd0+50
d0

.
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Application 4: Per-occurrence and stop–loss coverage

The aggregate amount that XYZ pays for the per–occurrence
coverage

V =

N∑
i=1

ZX,i

The aggregate amount ABC pays after the per–occurrence
coverage but before the stop–loss coverage:

U =

N∑
i=1

ZA,i

Then the total amount XYZ has to pay under the insurance
treaty is given by

W = V + Ud1+500
d1

.

Analysis of bivariate excess losses



Introduction
Univariate excess losses
Bivariate excess losses

Applications
References

Application 4: Per-occurrence and stop–loss coverage

Our goal is to select values of d0 and d1 so that the objective
function E[W ]/σW , where σW stands for the standard deviation of
W , is maximized.
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Application 4: Per-occurrence and stop–loss coverage

d0\d1 500 1000 1500 2000 2500

50 60.5477 51.4147 50.1536 49.8230 49.7006
100 36.9328 25.5104 24.0836 23.7256 23.5960
150 28.3191 15.3471 13.8257 13.4540 13.3209
200 24.6302 10.5683 8.9845 8.6046 8.4696
250 22.8897 8.0352 6.4053 6.0201 5.8840
300 22.0208 6.5733 4.9065 4.5175 4.3806

Table 4: The expected value of W (in thousands).
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Application 4: Per-occurrence and stop–loss coverage

d0\d1 500 1000 1500 2000 2500

50 86.2705 56.5318 50.3110 48.4753 47.7640
100 83.5429 45.7247 36.9180 34.2140 33.1540
150 82.5044 40.6877 29.9994 26.5188 25.1145
200 81.8811 38.0508 26.0496 21.9057 20.1714
250 81.4313 36.5486 23.6461 18.9579 16.9179
300 81.0813 35.6331 22.1120 16.9900 14.6755

Table 5: The standard deviation of W (in thousands).
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Application 4: Per-occurrence and stop–loss coverage

d0\d1 500 1000 1500 2000 2500

50 0.7018 0.9095 0.9969 1.0278 1.0405
100 0.4421 0.5579 0.6524 0.6934 0.7117
150 0.3432 0.3772 0.4609 0.5073 0.5304
200 0.3008 0.2777 0.3449 0.3928 0.4199
250 0.2811 0.2198 0.2709 0.3175 0.3478
300 0.2716 0.1845 0.2219 0.2659 0.2985

Table 6: The ratio of the mean and the standard deviation of W .
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Conclusions

Higher moments of excess losses may be obtained from Table
M.

The concept of bivariate excess losses may be useful.

Analysis of bivariate excess losses



Introduction
Univariate excess losses
Bivariate excess losses

Applications
References

Conclusions

Thank you!
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