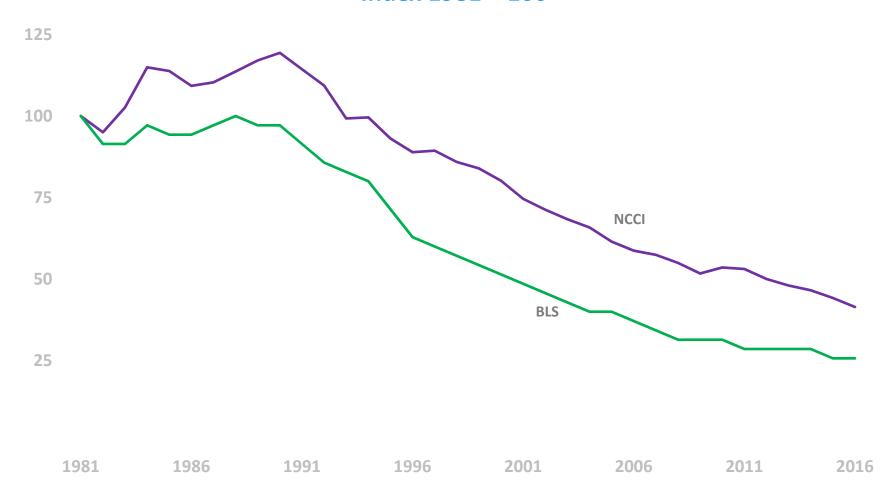


# The Impact of Fee Schedule Updates on Physician Payments

Presented by:

David Colón, Associate Actuary
Paul Hendrick, Actuarial Consultant

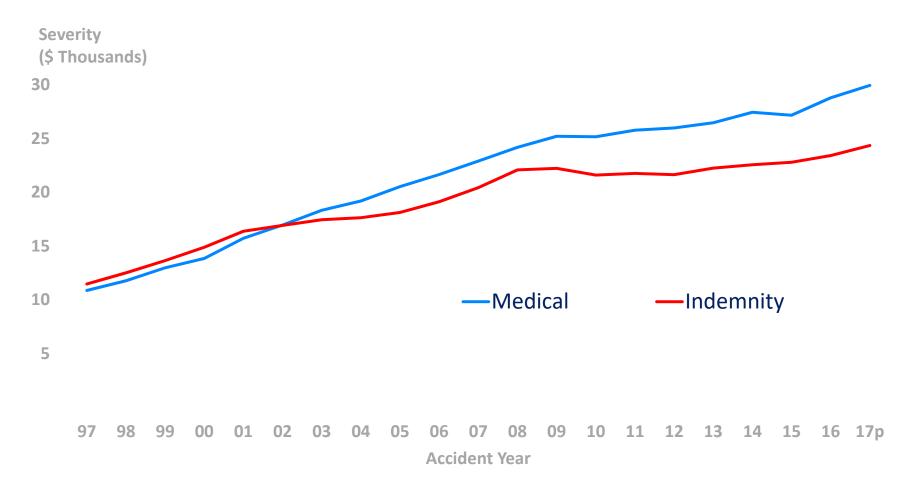
Casualty Actuarial Society Spring Meeting May 20, 2019
New Orleans, Louisiana


#### **Agenda**

- Background: Medical Costs in Workers Compensation
- Medical Fee Schedules and Loss Costs
- Price Realization Univariate Regression Model
- Price Realization Multivariate Autoregressive Model



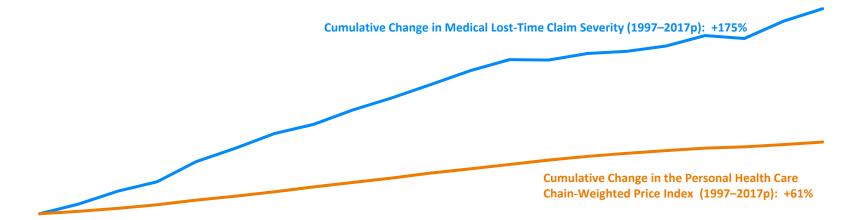
## **NCCI of Lost-Time Claim Frequency**


**Index 1981 = 100** 





#### **WC Average Lost-Time Claim Severity**


#### **Private Carriers and State Funds—NCCI States**





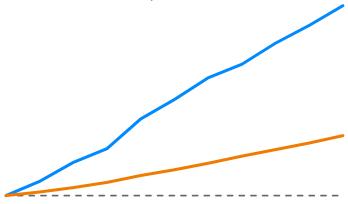
### **WC Average Medical Lost-Time Claim Severity**

**Private Carriers and State Funds—NCCI States** 



97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17p Accident Year

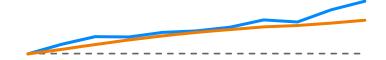



# Relative Growth Rates—Medical Severity vs. Price Inflation

**Private Carriers and State Funds—NCCI States** 

#### Medical lost-time claim severity

grew approximately **4.5%** per year

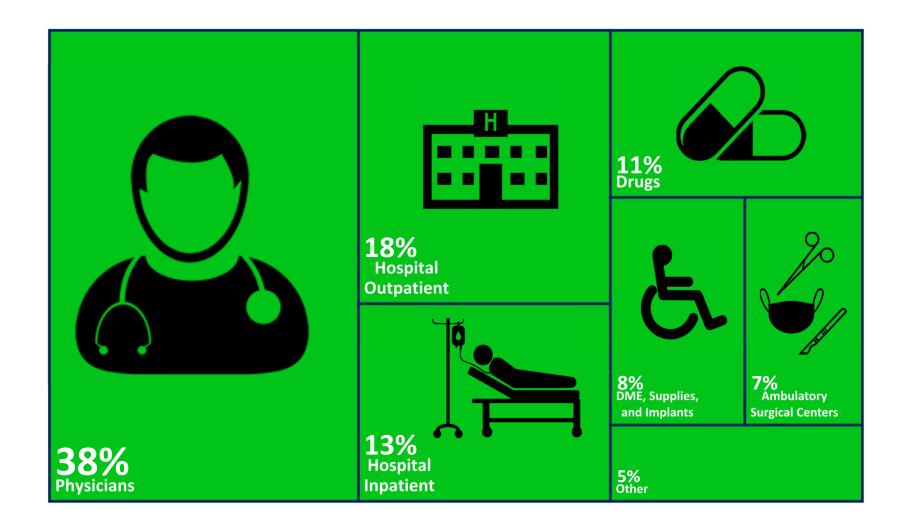

faster than medical care prices



97 98 99 00 01 02 03 04 05 06 07

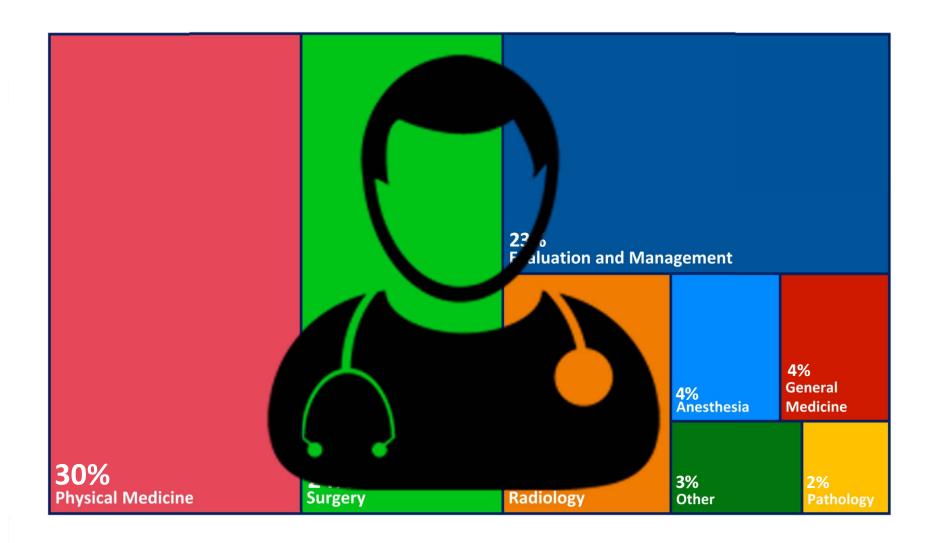
**Accident Year** 

Change in Medical lost-time claim severity and medical care prices tracked one another



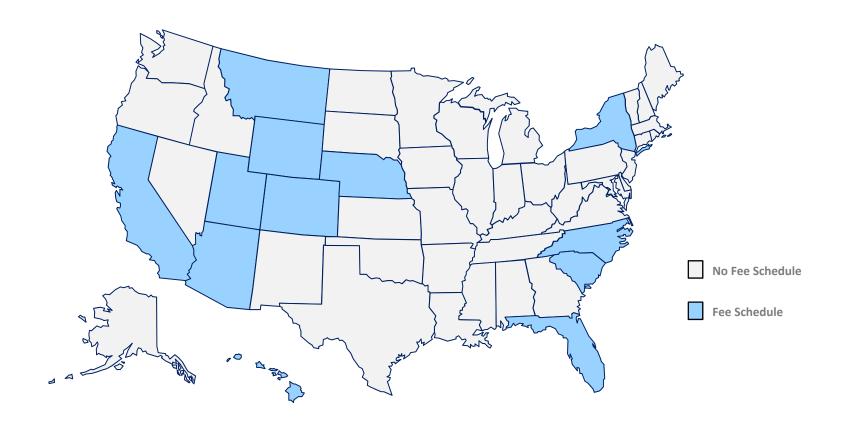

07 08 09 10 11 12 13 14 15 16 17p

**Accident Year** 




#### **Distribution of Medical Costs**






## **Distribution of Physician Costs**






## States With Physician Fee Schedules as of Year-End 1979 12 States in Total





## States With Physician Fee Schedules as of Year-End 2016 44 States in Total—33 of Which Have a Medicare-Based Schedule





#### What is a Fee Schedule?

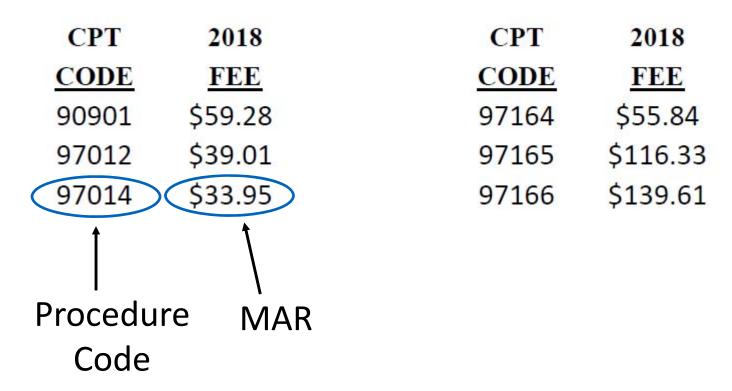
- A fee schedule is a catalog containing:
  - A list of alphanumeric procedure codes identifying a wide array of medical services.
  - The Maximum Allowable Reimbursement (MAR) for each procedure code.
- Represents a cost control measure for medical losses.
- Workers compensation fee schedules are created by state legislatures, and typically updated by rule.



| <b>CPT</b>  | 2018       | CPT         | 2018       |
|-------------|------------|-------------|------------|
| <b>CODE</b> | <b>FEE</b> | <b>CODE</b> | <b>FEE</b> |
| 90901       | \$59.28    | 97164       | \$55.84    |
| 97012       | \$39.01    | 97165       | \$116.33   |
| 97014       | \$33.95    | 97166       | \$139.61   |



| <b>CPT</b>  | 2018    |  |  |
|-------------|---------|--|--|
| <b>CODE</b> | FEE     |  |  |
| 90901       | \$59.28 |  |  |
| 97012       | \$39.01 |  |  |
| 97014       | \$33.95 |  |  |
| Procedure   | e       |  |  |
| Code        |         |  |  |


| CPT         | 2018       |
|-------------|------------|
| <b>CODE</b> | <b>FEE</b> |
| 97164       | \$55.84    |
| 97165       | \$116.33   |
| 97166       | \$139.61   |



| <b>CPT</b>  | 2018       |
|-------------|------------|
| <b>CODE</b> | <b>FEE</b> |
| 90901       | \$59.28    |
| 97012       | \$39.01    |
| 97014       | \$33.95    |
|             |            |
| Procedur    | e MAR      |
| Code        |            |

| <b>CPT</b>  | 2018     |
|-------------|----------|
| <b>CODE</b> | FEE      |
| 97164       | \$55.84  |
| 97165       | \$116.33 |
| 97166       | \$139.61 |
|             |          |





When a medical service provider performs "untimed electrical muscle stimulation" (97014), the WC insurer cannot pay more than \$33.95.



#### **Not All Services Have a MAR**

- Some procedures are not included on the fee schedule due to difficulty in cost estimates:
  - Rarely used or newly developed procedures
  - Open-ended time/resource requirements
- Which procedure is probably not on the fee schedule?

| Code  | Description                            |
|-------|----------------------------------------|
| 29405 | Apply Short Plaster Leg Cast           |
| 29999 | Unlisted Complex Arthroscopy Procedure |
| 30400 | Simple Nose Reconstruction             |



#### Fee Schedules Affect WC Ratemaking

Medical service providers generally are reimbursed at or near the MAR in states with a fee schedule.

Thus, when the MARs in a fee schedule are updated, medical payments tend to move in tandem.

- Fee schedule updates are thus benefit level changes
  - loss costs need to be adjusted.



#### **How Do States Establish Fee Schedules?**

- Many states base their fee schedule on Medicare reimbursement levels.
- Some states develop their own fee schedule based on group health payments or benchmarks from neighboring states.
- Other states just limit payments to a percentage of Usual and Customary Rates (UCR), or have no fee schedule at all.
- Most states with fee schedules update MARs annually.



#### **How Does NCCI Price Fee Schedule Changes?**

- This basic process covers a wide array of scenarios:
  - Determine the percentage change in MAR for each procedure code with a MAR
  - Weight the change for each procedure code by the latest Service Year payments for that code
  - Multiply the average MAR change by a "price realization factor" to estimate the paid loss change
  - Multiply the impact by the physician share of total WC benefit costs



## **Physician Example**

- State X physician MARs are currently 150% of 2017 Medicare. Their new fee schedule will be 160% of 2018 Medicare.
- There are only three medical services in State X:

| Code  | Description                  | <b>SY 2016 Paid</b> |
|-------|------------------------------|---------------------|
| 29405 | Apply Short Leg Cast         | \$400,000           |
| 29999 | Unlisted Complex Arthroscopy | \$100,000           |
| 30400 | Simple Nose Reconstruction   | \$500,000           |

Hypothetical example.



#### **Step 1: Determine the % Change in MARs**

| Code  | <b>2017 TN MAR</b> | <b>2018 TN MAR</b> | % Change in MAR |
|-------|--------------------|--------------------|-----------------|
| 29405 | \$126              | \$128              | +1.6%           |
| 29999 | N/A                | N/A                | -               |
| 30400 | \$1,560            | \$1,680            | +7.7%           |

Hypothetical example.

Codes without a MAR are assumed to be unaffected by fee schedule updates.



#### **Step 2: Payment-Weight the % Changes**

| Code  | 2016 Payments | Weight | % Change in MAR |
|-------|---------------|--------|-----------------|
| 29405 | \$400,000     | 40%    | +1.6%           |
| 29999 | \$100,000     | 10%    | -               |
| 30400 | \$500,000     | 50%    | +7.7%           |
| Total | \$1,000,000   |        |                 |

Hypothetical example.

Payment data is from NCCI's Medical Data Call for the latest service year.



#### **Step 3: Payment-Weight the % Changes**

| Code  | 2016 Payments | Weight | % Change in MAR |
|-------|---------------|--------|-----------------|
| 29405 | \$400,000     | 40%    | +1.6%           |
| 29999 | \$100,000     | 10%    | -               |
| 30400 | \$500,000     | 50%    | +7.7%           |
| Total | \$1,000,000   |        | +4.5%           |

Hypothetical example.

Payment data is from NCCI's Medical Data Call for the latest service year.



#### **Step 4: Apply the Realization Factor**

- Now, translate the change in average MAR to an expected change in medical payments (losses).
- Based on our research, 80% of a change in MAR is realized as a change in prices.
- **+4.5**% change in physician MARs  $\Rightarrow$  **+3.6**% change in physician payments



#### **Step 5: Impact on Overall Benefit Costs**

Impact on Physicians: +3.6%

Physician Share of Medical Costs: 40%

Impact on Medical Costs: 3.6% x 40% = +1.4%

Medical Share of Overall Benefit Costs: 58% Overall Impact on WC System Costs: +1.4% x 58% = +.8%



#### **Background**

- Physician payments comprise the largest share of medical costs for workers compensation (WC) claims (≈ 40%)
- NCCI needs to accurately estimate the impact of physician fee schedule updates for rate/loss cost filings
- Most of the analysis process is deterministic; the only unknown is the price realization factor
- NCCI began collecting a new Medical Data Call from affiliates in 2011
- Sufficient volume of data now available for analysis

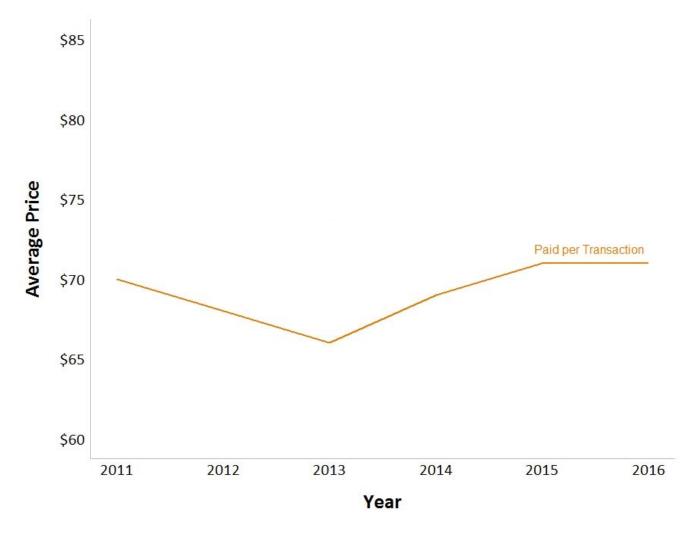


### **Key Findings**

- Changes to medical fee schedules for physician services affect prices paid for services that are subject to the fee schedule
- Approximately 80% of any change in MAR for a procedure code will be realized as a change in prices paid.\* This relationship generally holds for:
  - Both increases and decreases in MAR
  - Various types of physician services
  - Different magnitudes of changes in MAR
- An estimated price response of 80% to MAR changes is a reasonable estimate for any of the states included in this study
- Payments for services paid out-of-network are somewhat more responsive to MAR changes than payments for services paid in-network
- Most of the impact of a MAR change on prices paid is realized within one year from the date of a fee schedule change; the carryover effect of MAR changes from the prior year is relatively minor
- There is no discernable substitution effect on physician services in response to fee schedule changes

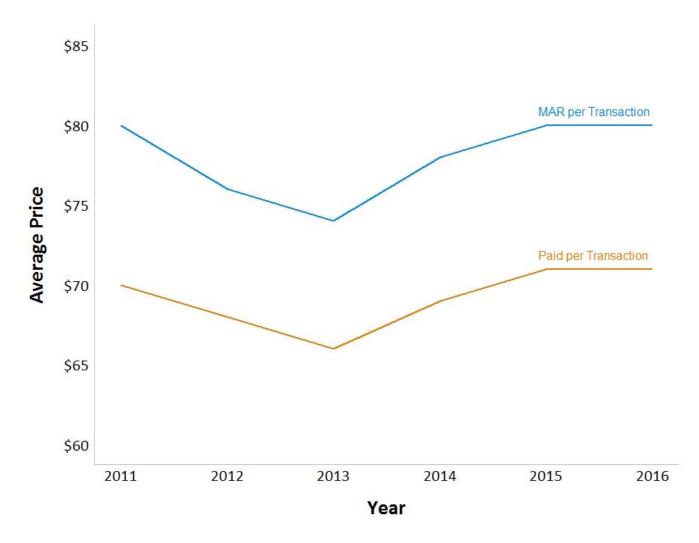


<sup>\*</sup>NCCI recognizes that this relationship might not hold if the fee schedule is set at a substantially uncompetitive level.


#### **Data**

- The data source used in this study is NCCI's Medical Data Call\*
- Data subject to the following limitations was used:
  - Services, other than anesthesia, provided between January 1, 2011 and December 31, 2016
  - NCCI states with an enforceable physician fee schedule that was updated at least once during the study period
  - Payments for a procedure code within a state with less than a 300% yearto-year change in MAR or change in price paid per transaction (PPT)
  - Transactions that were not considered outliers during the data validation process
  - Transactions not subject to a payment modifier
- The resulting data set consists of 65.7 million transactions representing \$4.5 billion in physician payments.
- These transactions were aggregated into a total of 28,193 state, year, and procedure code combinations.

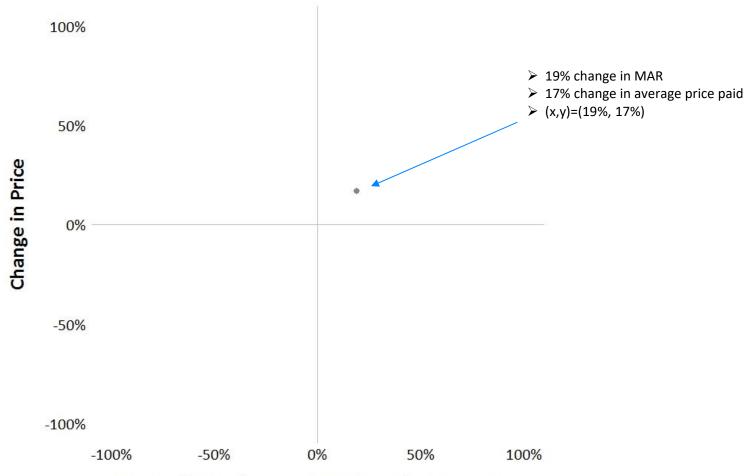



<sup>\*</sup>For Texas, the data source is DWC Medical State Reporting Public Use Data File.

#### Fee Schedules Have an Effect On Prices Paid





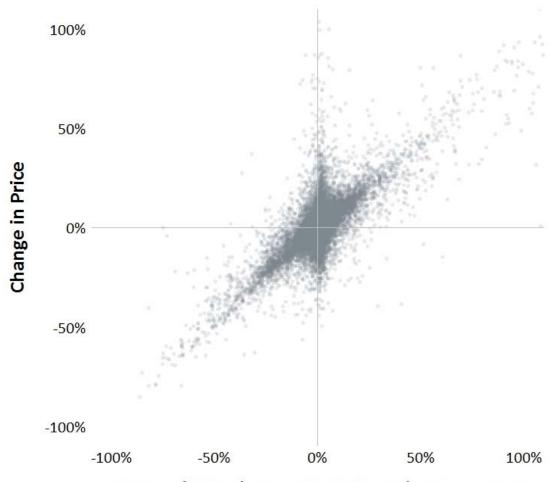

#### Fee Schedules Have an Effect On Prices Paid





#### **Single Observation**

#### **Change In Price VS. Change in MAR**

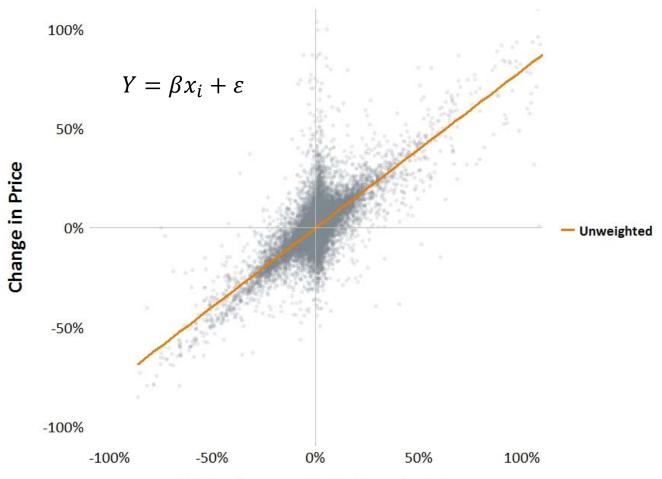



Change in Maximum Allowable Reimbursement



#### **All Observations**

#### **Change In Price VS. Change in MAR**

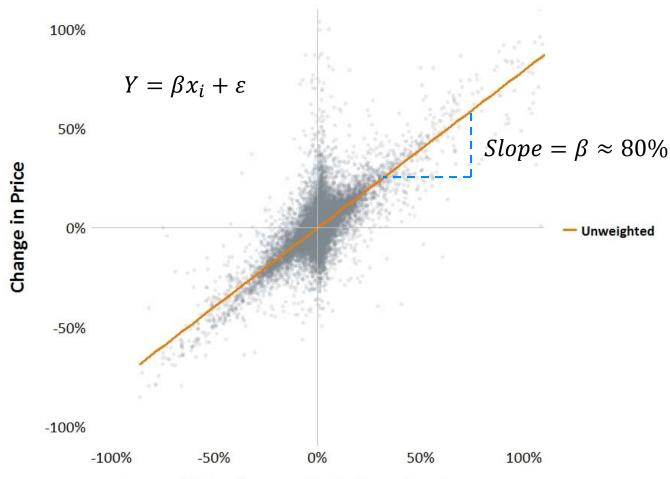



Change in Maximum Allowable Reimbursement



#### **Fitted Univariate Linear Regression Line**

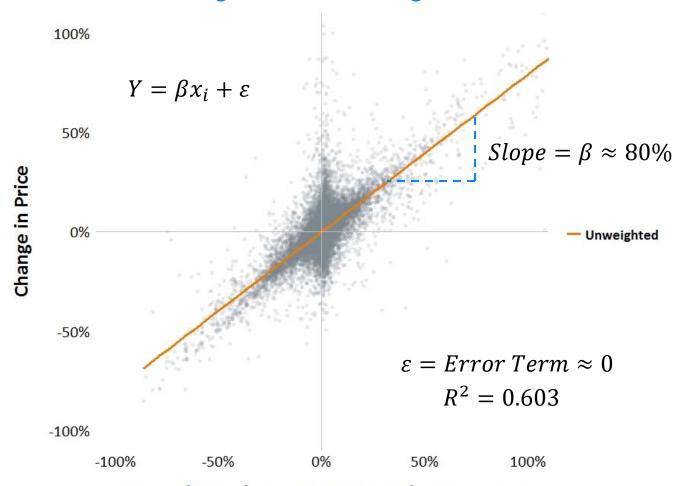
**Change In Price VS. Change in MAR** 




Change in Maximum Allowable Reimbursement



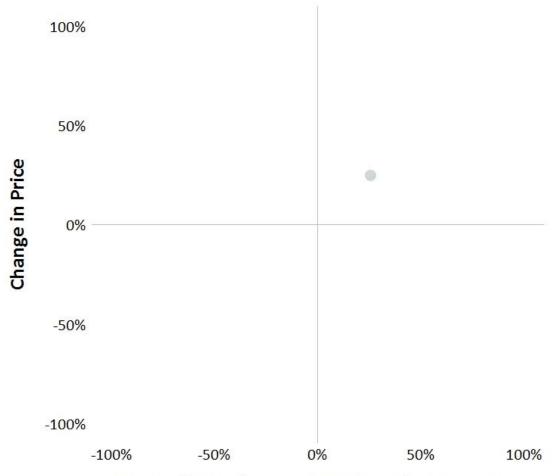
#### **Fitted Univariate Linear Regression Line**


**Change In Price VS. Change in MAR** 



Change in Maximum Allowable Reimbursement

#### **Fitted Univariate Linear Regression Line**

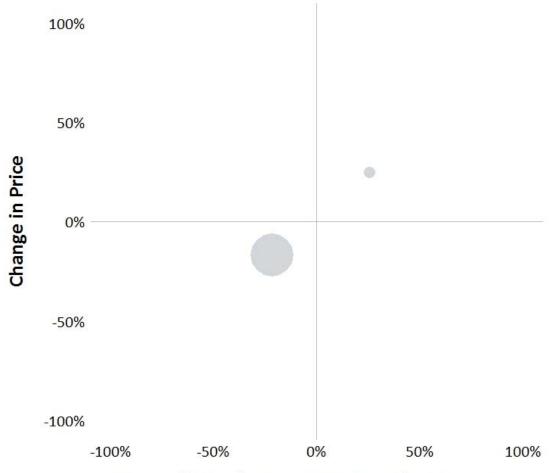

**Change In Price VS. Change in MAR** 



Change in Maximum Allowable Reimbursement

#### **Not All Observations Are Created Equal**

**Cost-Weighted Change In Price VS. Change in MAR** 

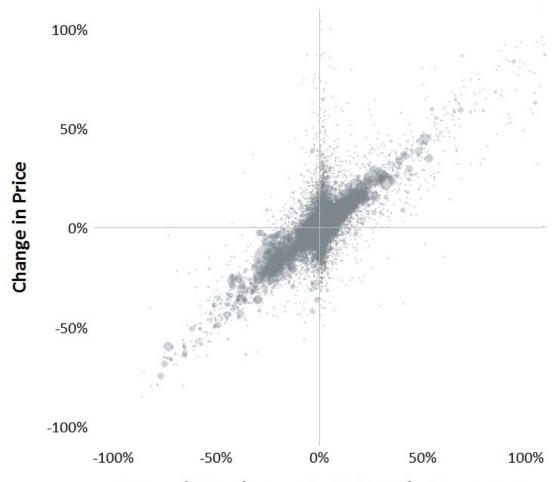



Change in Maximum Allowable Reimbursement



### **Not All Observations Are Created Equal**

**Cost-Weighted Change In Price VS. Change in MAR** 

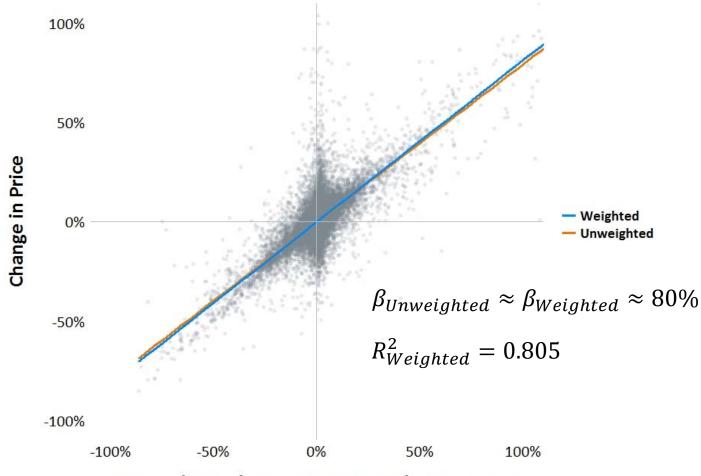



Change in Maximum Allowable Reimbursement



### **Not All Observations Are Created Equal**

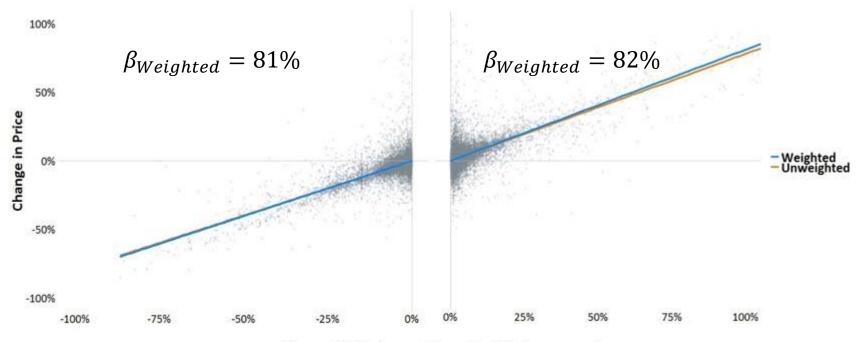
**Cost-Weighted Change In Price VS. Change in MAR** 




Change in Maximum Allowable Reimbursement

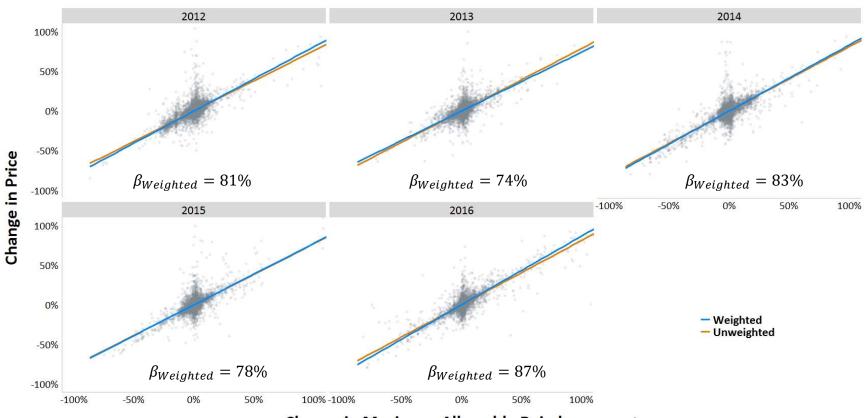


### **Fitted Univariate Linear Regression Line**


**Change In Price VS. Change in MAR** 



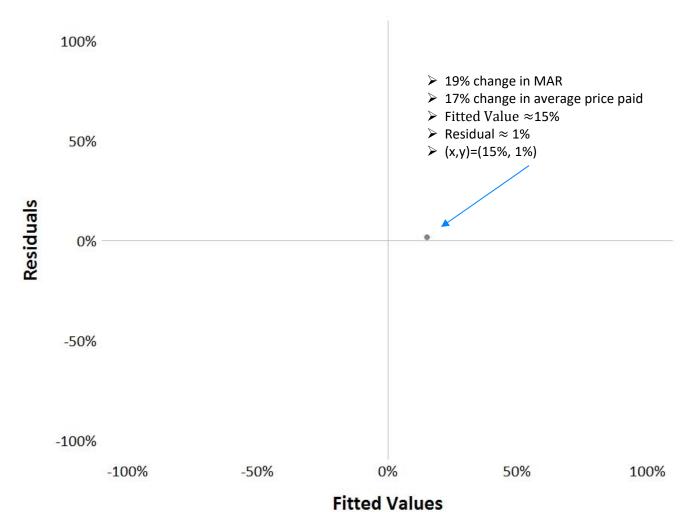
Change in Maximum Allowable Reimbursement


## Similar Price Responsiveness For Both Increases and Decreases in MARs

**Change In Price VS. Change in MAR** 



Change in Maximum Allowable Reimbursement


# Price Responsiveness to MAR Changes Is Generally Consistent By Years

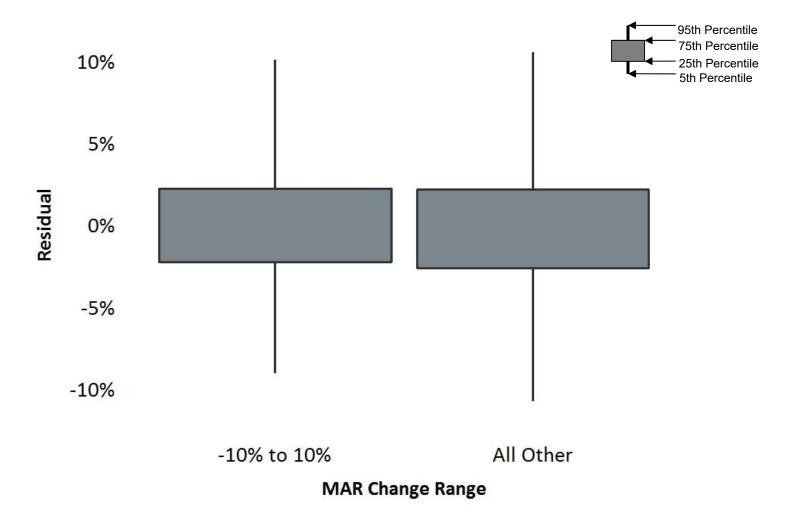


Change in Maximum Allowable Reimbursement



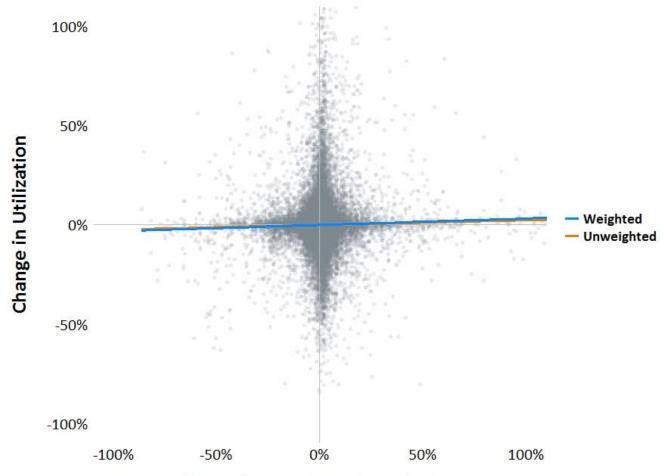
### **A Single Regression Residual**






### **Univariate Regression Residuals**

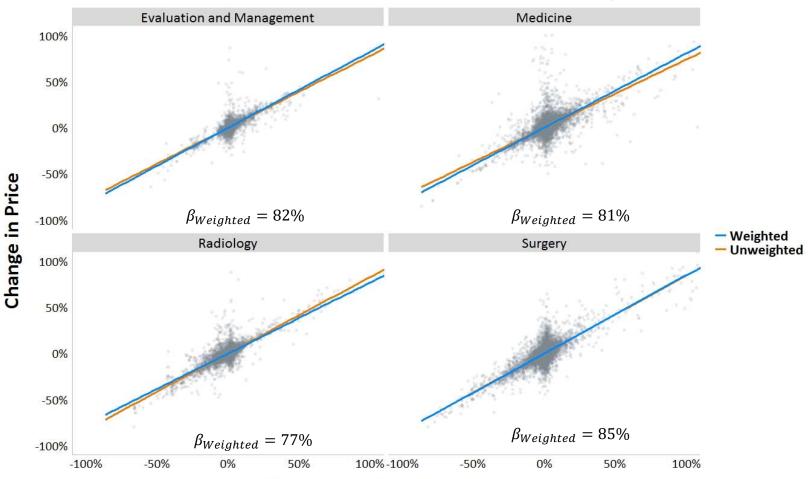





### **Univariate Regression Residuals Distribution**



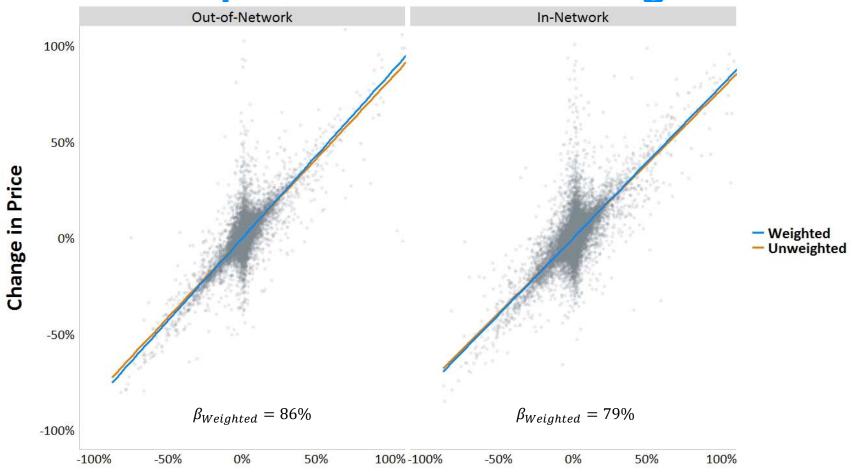



# There is No Apparent Utilization Effect in Response to MAR Changes



Change in Maximum Allowable Reimbursement

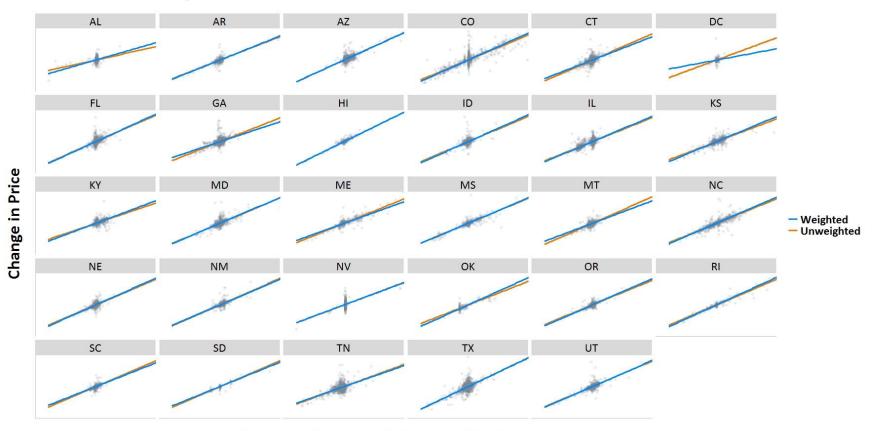



## All Medical Categories Have a Response Coefficient Around 80%



**Change in Maximum Allowable Reimbursement** 




# Out-of-network Services are Somewhat More Responsive to MAR changes



**Change in Maximum Allowable Reimbursement** 



# An Estimated Price Response of 80% to MAR Changes is Reasonable For All States



Change in Maximum Allowable Reimbursement



### An Estimated Price Response of 80% to MAR Changes is Reasonable For All States

|            |                         |          | 95 <sup>th</sup> Confide |                   |                  |
|------------|-------------------------|----------|--------------------------|-------------------|------------------|
| State      | Estimated<br>Regression | Pr(> t ) | Lower<br>Estimate        | Upper<br>Estimate | Average<br>Price |
|            | Coefficient             |          |                          |                   | Departure        |
| AL         | 55%                     | 4.45E-05 | 48%                      | 62%               | -22%             |
| AR         | 77%                     | 2.20E-16 | 69%                      | 84%               | -12%             |
| AZ         | 87%                     | 2.20E-16 | 85%                      | 90%               | -15%             |
| СО         | 86%                     | 2.20E-16 | 84%                      | 87%               | -10%             |
| СТ         | 75%                     | 2.20E-16 | 72%                      | 77%               | -15%             |
| DC         | 36%                     | 0.106568 | -29%                     | 101%              | -10%             |
| FL         | 88%                     | 2.20E-16 | 84%                      | 92%               | -7%              |
| GA         | 64%                     | 2.20E-16 | 61%                      | 66%               | -17%             |
| HI         | 94%                     | 2.20E-16 | 89%                      | 99%               | -6%              |
| ID         | 85%                     | 2.20E-16 | 81%                      | 90%               | -11%             |
| IL         | 81%                     | 2.20E-16 | 80%                      | 82%               | -9%              |
| KS         | 80%                     | 2.20E-16 | 77%                      | 83%               | -13%             |
| KY         | 72%                     | 2.20E-16 | 69%                      | 75%               | -12%             |
| MD         | 82%                     | 2.20E-16 | 79%                      | 85%               | -8%              |
| ME         | 69%                     | 2.20E-16 | 66%                      | 71%               | -11%             |
| MS         | 81%                     | 2.20E-16 | 77%                      | 85%               | -13%             |
| MT         | 72%                     | 2.20E-16 | 66%                      | 78%               | -8%              |
| NC         | 83%                     | 2.20E-16 | 82%                      | 85%               | -11%             |
| NE         | 85%                     | 2.20E-16 | 81%                      | 90%               | -10%             |
| NM         | 83%                     | 2.20E-16 | 76%                      | 89%               | -10%             |
| NV         | 71%                     | 2.20E-16 | 63%                      | 79%               | -26%             |
| OK         | 87%                     | 2.20E-16 | 84%                      | 89%               | -17%             |
| OR         | 84%                     | 2.20E-16 | 79%                      | 89%               | -3%              |
| RI         | 88%                     | 2.20E-16 | 84%                      | 92%               | -8%              |
| SC         | 76%                     | 5.52E-15 | 63%                      | 88%               | -15%             |
| SD         | 78%                     | 7.32E-09 | 73%                      | 83%               | -10%             |
| TN         | 67%                     | 2.20E-16 | 65%                      | 69%               | -11%             |
| TX         | 91%                     | 2.20E-16 | 89%                      | 93%               | -10%             |
| UT         | 83%                     | 2.20E-16 | 79%                      | 88%               | -9%              |
| All States | 81%                     | 2.20E-16 | 81%                      | 82%               |                  |



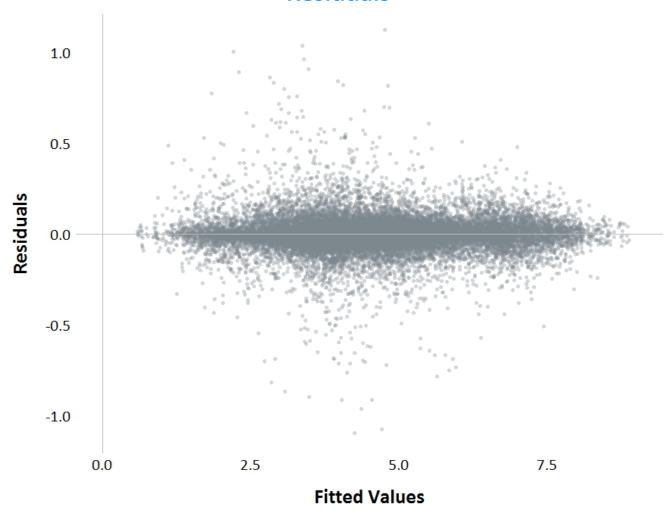
## An Estimated Price Response of 80% to MAR Changes is Reasonable For All States

|            |                                  |          | 95 <sup>th</sup> Confide | nce Interval      |                         |
|------------|----------------------------------|----------|--------------------------|-------------------|-------------------------|
| State      | Estimated Regression Coefficient | Pr(> t ) | Lower<br>Estimate        | Upper<br>Estimate | Average Price Departure |
| AL         | 55%                              | 4.45E-05 | 48%                      | 62%               | -22%                    |
| AR         | 77%                              | 2.20E-16 | 69%                      | 84%               | -12%                    |
| AZ         | 87%                              | 2.20E-16 | 85%                      | 90%               | -15%                    |
| со         | 86%                              | 2.20E-16 | 84%                      | 87%               | -10%                    |
| СТ         | 75%                              | 2.20E-16 | 72%                      | 77%               | -15%                    |
| DC         | 36%                              | 0.106568 | -29%                     | 101%              | -10%                    |
| FL         | 88%                              | 2 205 16 | 2/1%                     | 92%               | -7%                     |
| GA         | 64%                              | 2.20E-16 | 61%                      | 66%               | -17%                    |
| HI         | 94%                              | Z.20E-10 | 69%                      | 99%               | -6%                     |
| ID         | 85%                              | 2.20E-16 | 81%                      | 90%               | -11%                    |
| IL         | 81%                              | 2.20E-16 | 80%                      | 82%               | -9%                     |
| KS         | 80%                              | 2.20E-16 | 77%                      | 83%               | -13%                    |
| KY         | 72%                              | 2.20E-16 | 69%                      | 75%               | -12%                    |
| MD         | 82%                              | 2.20E-16 | 79%                      | 85%               | -8%                     |
| ME         | 69%                              | 2.20E-16 | 66%                      | 71%               | -11%                    |
| MS         | 81%                              | 2.20E-16 | 77%                      | 85%               | -13%                    |
| MT         | 72%                              | 2.20E-16 | 66%                      | 78%               | -8%                     |
| NC         | 83%                              | 2.20E-16 | 82%                      | 85%               | -11%                    |
| NE         | 85%                              | 2.20E-16 | 81%                      | 90%               | -10%                    |
| NM         | 83%                              | 2.20E-16 | 76%                      | 89%               | -10%                    |
| NV         | 71%                              | 2.20E-10 | 63%                      | 70%               | -26%                    |
| OK         | 87%                              | 2.20E-16 | 84%                      | 89%               | -17%                    |
| OR         | 84%                              | 2.20E-16 | 79%                      | 89%               | -3%                     |
| RI         | 88%                              | 2.20E-16 | 84%                      | 92%               | -8%                     |
| SC         | 76%                              | 5.52E-15 | 63%                      | 88%               | -15%                    |
| SD         | 78%                              | 7.32E-09 | 73%                      | 83%               | -10%                    |
| TN         | 67%                              | 2.20E-16 | 65%                      | 69%               | -11%                    |
| TX         | 91%                              | 2.20E-16 | 89%                      | 93%               | -10%                    |
| UT         | 83%                              | 2.20E-16 | 79%                      | 88%               | -9%                     |
| All States | 81%                              | 2.20E-16 | 81%                      | 82%               |                         |



### **Multivariate Log-Log Autoregressive Model**

To estimate the coefficients of our model, we use an ordinary least squares (OLS) regression:


$$\begin{split} \log(P_{i,s,t}) \\ &= \beta_1 \log(1 + \% \Delta M_{i,s,t}) + \beta_2 \log(P_{i,s,t-1}) + \beta_3 \log(1 + \% \Delta M_{i,s,t-1}) \\ &+ \beta_4 \log(P_{i,s,t-2}) + \epsilon_{i,s,t} \end{split}$$

- $P_{i,s,t}$  denotes the average PPT for procedure code i during calendar year t within state s
- $\%\Delta M_{i,s,t}$  denotes the percentage change in average MAR applying to procedure code i within state s from calendar year t-1 to calendar year t
- $\epsilon_{i,s,t}$  is the random error term for each observation



### Multivariate Log-Log Autoregressive Model

#### **Residuals**





#### **Model Results**

| Variable                       | Fitted Coefficient | Standard Error | P-Value |
|--------------------------------|--------------------|----------------|---------|
| $\log(1+\%\Delta M_{i,s,t})$   | 0.797              | 0.028          | 0.0000  |
| $\log(P_{i,s,t-1})$            | 0.978              | 0.004          | 0.0000  |
| $\log(1+\%\Delta M_{i,s,t-1})$ | 0.049              | 0.011          | 0.0000  |
| $\log(P_{i,s,t-2})$            | 0.021              | 0.004          | 0.0000  |
|                                |                    |                |         |
| Model adj. $R^2$               | 0.9997             |                |         |
| Model p-value                  | 0.0000             |                |         |



### **Approximation to Linear Regression Model**

$$P_{i,s,t} \approx exp(\beta_1 \log(1 + \%\Delta M_{i,s,t}) + \beta_2 \log(P_{i,s,t-1}))$$

$$= (1 + \% \Delta M_{i,s,t})^{\beta_1} \times P_{i,s,t-1}^{\beta_2}$$

$$\approx (1 + \beta_1 \times \% \Delta M_{i,s,t}) \times P_{i,s,t-1}^{\beta_2}$$

$$\approx (1 + 0.8 \times \% \Delta M_{i,s,t}) \times P_{i,s,t-1} \Rightarrow$$

$$\%\Delta P_{(i,s,t)} \approx 0.8 \times \%\Delta M_{i,s,t}$$

### **Example At The Procedure Level**

| Procedure Code                                               | 97110   | 97530   | 99213   |
|--------------------------------------------------------------|---------|---------|---------|
| (1) Year 2016 PPT                                            | \$41.98 | \$44.45 | \$90.12 |
| (2) % Change in MAR Between 2016 and 2017                    | +3.2%   | 0.0%    | +7.3%   |
| (3) Year 2017 PPT                                            | \$42.40 | \$43.02 | \$92.46 |
| (4) % Change in MAR Between 2017 and 2018                    | +2.3%   | +5.5%   | +2.4%   |
| (5) Predicted Year 2018 PPT (based on (1) to (4))            | \$43.21 | \$44.90 | \$94.47 |
| (6) Implied Price Realization Factor = [(5) / (3) – 1] / (4) | 84%     | 80%     | 90%     |



### **Sensitivity**

| (1) Weighted average change in physician MARs            | +2.5% | +2.5% |
|----------------------------------------------------------|-------|-------|
| (2) Price realization factor                             | 70%   | 90%   |
| (3) Impact on physician payments = (1) x (2)             | +1.8% | +2.3% |
| (4) Share of WC medical costs attributable to physicians | 40%   | 40%   |
| (5) Medical share of total WC losses                     | 58%   | 58%   |
| (6) Impact on overall WC system costs = (3) x (4) x (5)  | +0.4% | +0.5% |



#### **Further Refinements?**

- Possible to include:
  - More variables (network, relativity to Medicare)
  - More time lag (3 years?, more?)
- Practical Problems:
  - Limited data (only 6 years)
  - Limited timeframe



#### **Conclusion**

- This study examines the effect of changes in fee schedules on physician payments and the study finds that in response to fee schedule changes, prices paid for physician services change by approximately 80%
- The results are fairly consistent across all the various scenarios tested within each methodology examined

