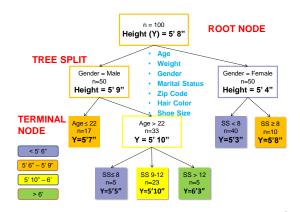
Facy Trop cy	
Easy Tree-sy An Overview of Decision Trees	
Underwriting Collaboration Seminar	
New Orleans, LA June 26, 2018	
June 20, 2010	
Linda Brobeck <u>Lbrobeck@Pinnacleactuaries.com</u>	
Elaine George <u>Elaine.George@Chubb.com</u>	
Antitrust Statement	
 The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a 	
forum for the expression of various points of view on topics described in the programs or agendas for such meetings.	
 Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business 	
 judgment regarding matters affecting competition. It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions 	
that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.	
Introductions and Agenda	
LEARNING OBJECTIVES 1. Explain the fundamentals of decision trees	
Evaluate and decide when to apply decision trees to a underwriting business problem	
Design a decision tree predictive modeling analysis	
AGENDA • Decision Tree Basics via an Example	
 Underwriting Specific Applications of Decision Trees Predictive Modeling Concepts 	
- · · · · · · · · · · · · · · · · · · ·	

Two Objectives:	
•	
Purity	
→ Measure of variation	
Parsimony	
→ Desire for simple	
3	
An Example	
4	
Estimate(predict) the height of an adult, given the following information:	
-	
AgeWeight	
• Gender	
 Marital Status Zip Code	
Hair Color Shoe Size	
• Snoe Size	



Terminology

Target Response,
Predicted Outcome,
Dependent Variable

Y: Height

Explanatory/Independent Variables, Predictors, Features

X_i: Age, Gender, Marital Status Zip Code, Hair Color, Shoe Size

If the Target Variable is:	
Categorical → Classification Tree	
Continuous → Regression Tree	
UW Example	
First Determine: What is the business issue? Renewal Guidelines Non-Sufficient Funds Prevalence ACV vs Replacement Cost Inspection Ordering Allocation of Resources	

Business issue?	
Renewal Guidelines	
Predicted Outcome (Target)?	
rredicted Outcome (larget):	
Commercial Auto Loss Ratio	
Currently 80% overall LR	
12	
12	
Explanatory/Independent	
Variables, Predictors	
Vehicle Type	
Principal Garaging	
Business Type	
Annual Mileage	
Driving Record	
Claim History	
,	
13	
Individual Variable Analysis	
Overall Loss Ratio = 80%	
Vehicle Type (VT)	
PPA = 71%; Heavy = 86%; Light = 82%	
Principal Garaging (PG)	
Urban = 80%; Rural = 81%; Suburb = 80%	
Business Type (BT)	
10 Classifications LR ranges 78% - 89%	
_	
14	

Individual Variable Analysis

Overall Loss Ratio = 80%

Annual Mileage (AM)

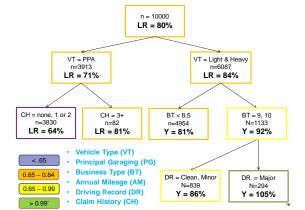
Short = 81%; Average = 80%; Long = 80%

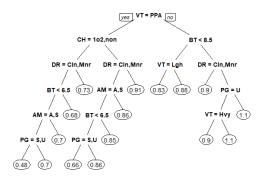
Driving Record (DR)

Clean = 78%; Minor = 78%; Major = 84%

Claim History (CH)

None = 81%; 1-2 = 77%; 3+ = 83%





17

Theory

Tł	ıe	Ρ	ro	ce	ess
----	----	---	----	----	-----

> Splitting Procedure

The domain space of explanatory variables $X_1,...X_n$ is split into two subsets where observed values in X_j belong to one of the subsets i.e. < s or >= s OR s_1 =male s_2 =female

> Improvement Value

The dimensions j and s above are chosen to minimize the error in the prediction among all such binary (two-leveled) trees. Process is iterated.

Measures for Splitting Criteria

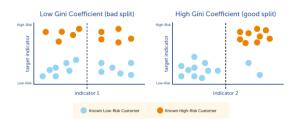
Significance	Measures Independence			
Numeric purity				
p-values of Chi-square variance reduction				
Entropy	Measures Disorder			
Categorical				
Measures pureness of the level				
	Measures Gain in Intrinsic Information			
Information Gain = Entropy (parent) – Weighted sum of Entropy (children)				
Penalizes large values/splits				
	Measures Misclassification			

• Max = 1 - (1 / # of classes)

• Minimum = 0 (all records belong to one class)

20

Gini Coefficient



.

Stopping Criterion

- ➤ No stopping criterion
- ➤ Minimum leaf (node) size
- Maximum number of levels or splits
- ➤ Let data determine the stopping criterion (see Appendix)

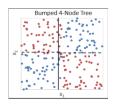
Advantages

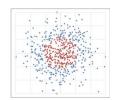
- Non-parametric
- Simple to understand / Easy to interpret
- Automatic variable and interaction selection
- Handles missing values and outliers

23

Limitations

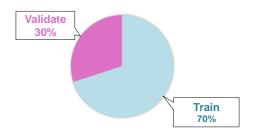
- Over-fit and Instability
- Some relationships difficult to find



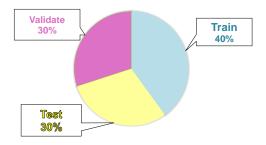


Validating Results - Avoiding Over Fit

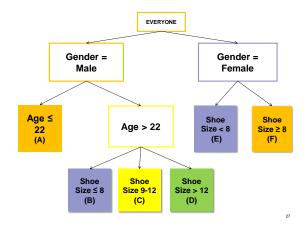
The validation dataset ensures a way to accurately measure your model's performance.

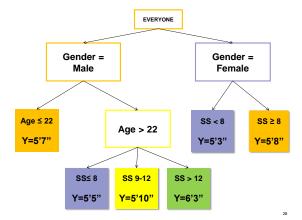


Validating Results - Avoiding Over Fit



Large datasets can be split into 3 unique subsets.





If there is time...

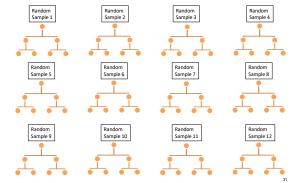
Ensembles

Combine many weak classifiers in order to strengthen the overall result

- Bagging (Bootstrap Aggregating)
- Boosting
- Stacked Generalization (Blending)

30

Random Forests



Boosting

- Gradient Boosting
 - -Sequential based on residual of prior tree
- Multiplicative Boosted Trees
 - Multiplicative residuals
 - Multiplicative combining of trees
- AdaBoost
 - Iteratively changes weights of training observations based on errors of previous prediction

	_	
	_	
Appendix		
	_	
	-	
	_	
	_	
	_	
R		
	-	
Library(rpart)	_	
Library(rpart.plot)		
tree <- rpart(LR $^{\sim}$ VT+PG+BT+AM+DR+CH, data=dataset, weights = WP)	-	
PRP(tree)	_	
	_	
	_	
34	_	
Stopping Criterion – Regression Trees		
	_	
➤ To begin, we need to define an error function E() on any leaf of a tree. Think of E() as a measure of how far the predicted	_	
are from observed \sim Then, for a fixed $\alpha > 0$, find that tree ${\cal T}$ that minimizes	_	
$C_{lpha}(T) = \sum_{k=1}^{ T } E(L_k) + lpha T $		
 E(L_k) is the error contributed by the kth leaf and α is a parameter that rewards parsimony 	-	
$ ightharpoonup$ One can see that minimizing the cost complexity criterion $C_{lpha}()$ requires a balance between predictive power and parsimony to be struck	-	
	_	
~		

Stonning	Criterion	- Regression	Trees	(cont)	١
Stopping	Criterion	- regression	11ees	(COIIC.)	l

- Define
- ▶ Define $1. \ |L_k| = \sum_{\substack{i=1\\w \in I_k}}^K w_i$ $2. \ \ \mathcal{g}_k = \frac{1}{|L_k|} \sum_{\substack{i=1\\k \in I_k}}^K w_i y_i$ ► A standard choice for E() is

$$E(L_k) = \sum_{\mathbf{x}_i \in L_k} w_i (y_i - \bar{y}_k)^2$$

- ▶ There are other standard functions for E(), for example 1. $E(L_k) = \sum_{n_i \in L_k} w_i |y_i \bar{y}_k|$ 2. $E(L_k) = \sum_{n_i \in L_k} w_i |y_i \bar{y}_k|^p$ for 1 ▶ User may have choice on what functional form <math>E() may take depending on the software

Bibliography

Hastie, T. et al. (2011) The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Edition), Springer, New York.