That Cost Me Whatle

Demonstrating the Need and Utility of Catastrophe Models in
Quantifying Severe Thunderstorm Risk

ric Robinson
Principal Scientist, AIR Worldwide
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What is a Severe Thunderstorm®@

AMS Glossary:

In general, any destructive storm, but usually applied to severe local
storms in particular, that is, intense thunderstorms, hailstorms,
and tornadoes.

Primary Sub-perils

Straight-line Wind (> 50 Hail (>=1” in diameter) Tornado (EFO0-EF5)
knots)
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What is a Severe Thunderstorm?@

Supercells

» Rotating, isolated
» Typical sub-perils
« Tornado
 Hail
* Wind/downbursts
» Typical dimensions
 Duration: hours
 Spatial: ~100-1,000s of km?

Multicells (Squall Lines, Derechos)
i -

» Long-lasting
» Typical sub-perils
* Wind/downbursts
 Halil
« Tornado
» Typical dimensions
* Duration: days
« Spatial: ~10,000-100,000s of km?
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Severe Thunderstorms Losses can Rival Those Risks of
More “Traditional” Concerns...

US Insured Losses
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... And these Losses have Been Steadily Increasing
Over the Last 30 Years
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Overall losses in US$: nominal, inflation adjusted, and normalised
Relevant convective storm events

in the United States 1980 - 2017
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@ MNominal overall losses ® Inflation adjusted overall losses ® Normalised overall losses
{in 2017 values) (in 2017 values)

Inflation adjusted via country-specific consumer price index and consideration of exchange rate fluctuations between local currency and US$.
Mormalization via local GDP developments measured in USS$.
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Thunderstorms Also Exhibit High Degrees of Year-to-
Year Variabillity...

Average Annual Tornado Days Average Annual Tornado Days
1990-2001 2000-2011




Thunderstorms Also Exhibit High Degrees of Year-to-
Year Variabillity...

Average Annual Tornado Days Average Annual Tornado Days
1990-2001 2000-2011

40-80% Increase in Tornado
Activity!!




... That is Potentially Affected by Changing/Cyclical
Climate Conditions

Tornadoes

Hail

ENSO'’s Effect on Severe Thunderstorm Activity

El Nino Influence

La Nina Influence
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But it’s more than just
ENSO!!

Pacific Decadal
Oscillation (PDO)

North Atlantic Oscillation
(NAO)

Pacific-North American
Pattern (PNA)

Atlantic Multi-Decadal
Oscillation (AMO)
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...And Covers Relatively Small Areas

If | took EVERY tornado recorded for the last 70 years,
and placed them on the US without overlap:

1.3% of the
Eastern 2/3 of
CONUS
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Limiting to the
last 20-yrs and
EF1+

.5% of Eastern 2/3 of

CONUS
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So What Does 2016-2017 (and Other Recent Years)
Say About ST Riskee?

« A Non-stationary, highly variable, potentially cyclical,
spatially correlated, illF-observed phenomenon that can
cause 10s of billions of dollars in Insured Losses per year

e |n other words...
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Don’t Worry!l The Models Can Help!

« Leverage multiple datasets
to extend our
“observational” dataset

« Helps reduce variability and
uncertainty

Claims

Yeil=lglel=

* Leverage engineering and
sclence to differentiate risks
IN a robust way

« Test sensitivifies fo various
parameters (e.g. missing
Catastrophe Models dataq)
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The Basic CAT Modeling Framework

2012 North American Derecho

T

~ Generation 4

Intensity

Calculation /4

Exposure
Information

Y777

R s
R B s
N

L
Deductible®

Policy
Conditions

Loss

~ Calculation 4

WY



The Basic CAT Modeling Framework

2012 North American Derecho

Event

\_ Generation /

How Many?
Where?
When?

How Often?

Intensity

Calculation 4

R 8 A
Exposure
Information

Policy
Conditions

Loss

~ Calculation 4
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The Basic CAT Modeling Framework

2012 North American Derecho

Intensity
\_ Calculation /

Event
~ Generation 4

How Strong?

Spatially/Seasonally Eii
Correlated? _ Information

Policy
Conditions

Loss
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The Basic CAT Modeling Framework

2012 North American Derecho

Event Intensity
~ Generation 4 ~ Calculation 4

Affecting Which
Buildings?

Exposure
Information

Policy
Conditions

Loss
~ Calculation 4
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The Basic CAT Modeling Framework

2012 North American Derecho

Event Intensity
~ Generation 4 ~ Calculation 4

Doing What
bamage’? S
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The Basic CAT Modeling Framework

2012 North American Derecho

Event Intensity
~ Generation 4 ~ Calculation 4

Deductibles?
Limits? Exposu?e | iz ” Loss
Treaty Structure? _Information SEE  Calculation
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Conditions



The Basic CAT Modeling Framework
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Event Generation: What Data Sources Do We Have

to Quantify the Risk?e

Eye-witness Reports
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Ground “Truth” But Biased by
Population Changes

Weather Data
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Temperature, Humidity, Wind Speed
BUT TYPICALLY not specific to
wind/hail/tornado

Other Datasets (e.g. Radar)

Depends on time and space coverage.
Uncertainties vary by data type
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Scale of Storms Makes Them Difficult to Observe

. Thunderstorm ﬁ Weather station
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Scale of Storms Makes Them Difficult to Observe
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Scale of Storms Makes Them Difficult to Observe
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Scale of Storms Makes Them Difficult to Observe
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These Datasets Combine to Provide a Catalog of Plausible, Yet

Perhaps Yet Unrealized Events

Stochastic

Catalog

A 100K Year Stochastic Catalog

Day 1

Day 2 Day 3

Year 1 jﬁ/d j“MVJ T\J

Year 2 ;LMJ ﬂﬂwj ﬁm’ ) j
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Now that We Have a Catalog... How Do We
Calculate Damage?®e

Experiments Damage Surveys Claims Studies

Claim Frequency: Roof Damage
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Claim Severity: Roof Damage
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(

)
>
AJ



Probability

We Can Also Understand Uncertainty Directly Using
Claims Data
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In Fact These Data Sources Allow Us to Consider
Many Different Mitigation Factorse

Supported Features in the Severe Thunderstorm Model

« Seal of Approval « Roof Anchorage

* Floor of Interest * Year Roof Built

« Building Condition « WallType

« Tree Exposure «  Wall Siding

« Small Debris Source « Glass Type

« Large Missile Source « Glass Percent

« Terrain Roughness «  Window Protection

« Adjacent Building Height « Exterior Doors

« Roof Geometry « Building-Foundation Connection
« Roof Pitch « Internal Partition Walls

« Roof Covering «  Wall Atftached Structures
« Roof Deck « Appurtenant Structures

« Roof Covering Attachment « Roof Attached Structures

« Roof Deck Attachment
Hail Impact Resistance Roof Coverings:

Newly Added v Class A Least resistant
Features ONLY v Class B
for Hail v Class C \ 4
v Class D Most resistant

Note: Secondary features highlighted in green are supported for the hail sub-peril.
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Damage Estimation: Translate Exposure, Building
Characteristics, and Hazard info Damage

Building Characteristics Damage Functions
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Loss Estimation: Apply Policy Terms and Uncertainty to Get
Total Gross Insured Loss

Vulnerability Ground
s ey Up Loss

Deductibles

Gross Loss
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So How Can We Use This Tool fo Manage the
"Mess"e

The model alleviates many of the previous issues we
encountered:

« “Highly variable”

More “years” of data allow for decreased variance and increased coverage

*  “lll-observed”

Application of meteorology and engineering allows for reasonable estimates in
absence of claims data

“Non-stationary, spatially correlated, and potentially cyclical”

Climate variability implicitly captured through use of historical atmospheric
conditions

The model also allows us to answer key gquestions like...
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"What was the Probability of that Happeninge!”

Event Loss Table Exceedance Probability Curve
m--m ;
2,153,655
5 1 6 3 75,000,000 -
3 | 6 27 43,023,654 |
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53229 10000 10 1 100,235,225 S i ini ]
53230 10000 11 12 5,237,585 AAL 50% 20% 10% 5% 2% 1% 0.4% 0.2%
53231 10000 12 15 10,236,125 Exceedance Probability



“How Much of an QOutlier was 20XX?¢
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“What if it happened againle”

1896 St. Louis Tornado
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St. Louis c. 1875 St. Louis — Present Day
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GNP 49% $ 3.558163,038

Tangible Wealth 63% $ 15976856168

Modeled N/A S  7,256,136,150




The Case for CAT Models...

Severe thunderstorms present a

complex yet serious risk to the
Insurance market

& 7Y CAT model’'s help “tame the mess”
PML

Flexibility and robustness help view

the risk from different perspectives




