Coherent risk measures, coherent capital allocations and the gradient allocation principle

Abstract
The gradient allocation principle, which generalizes the most popular specific allocation principles, is commonly proposed in the literature as a means of distributing a financial institution's risk capital to its constituents. This paper is concerned with the axioms defining the coherence of risk measures and capital allocations, and establishes results linking the two coherence concepts in the context of the gradient allocation principle. The following axiom pairs are shown to be equivalent: positive homogeneity and full allocation, subadditivity and "no undercut", and translation invariance and riskless allocation. Furthermore, we point out that the symmetry property holds if and only if the risk measure is linear. As a consequence, the gradient allocation principle associated with a coherent risk measure has the properties of full allocation and "no undercut", but not symmetry unless the risk measure is linear. The results of this paper are applied to the covariance, the semi-covariance, and the expected shortfall principle. We find that the gradient allocation principle associated with a nonlinear risk measure can be coherent, in a suitably restricted setting.
Volume
42
Page
235-242
Number
1
Year
2008
Keywords
Risk capital allocation; Gradient allocation principle; Coherent risk measures; Coherent capital allocations
Categories
New Risk Measures
Capital Allocation
Publications
Insurance: Mathematics and Economics
Authors
Buch, A.
Dorfleitner, G.