We analyze this intercompany experience using multilevel models. The multi-level nature of the data is due to: a vehicle is observed over a period of years and is insured by an insurance company under a "fleet" policy. Fleet policies are umbrella-type policies issued to customers whose insurance covers more than a single vehicle. We investigate vehicle, fleet and company effects using various count distribution models (Poisson, negative binomal, zero-inflated and hurdle-Poisson). The performance of these various models is compared; we demonstrate how our model can be used to update a priori premiums to a posteriori premiums, a common practice of experience-rated premium calculations. Through this formal model structure, we provide insights into effects that company-specific practice has on claims experience, even after controlling for vehicle and fleet effects.
Keywords: Actuarial science, hierarchal model; multi-level model; experience rating; bonus-malus factors; generalized count distributions.