Link
Abstract
In this study, we present an approach based on neural networks, as an alternative to the ordinary least squares method, to describe the relation between the dependent and independent variables. It has been suggested to construct a model to describe the relation between dependent and independent variables as an alternative to the ordinary least squares method. A new model, which contains the month and number of payments, is proposed based on real data to determine total claim amounts in insurance as an alternative to the model suggested by Rousseeuw et al. (1984) [Rousseeuw, P., Daniels, B., Leroy, A., 1984. Applying robust regression to insurance. Insurance: Math. Econom. 3, 67-72] in view of an insurer.
Volume
45
Page
236-241
Number
2
Year
2009
Keywords
Neural networks, Least squares method, Total claim amount, Claim amount payments, Fuzzy if-then rules, predictive analytics
Categories
Insurance Risk
Publications
Insurance: Mathematics and Economics